1887

Abstract

In , the resistance conferred by the gene is effective against all of the pepper-infecting tobamoviruses except (PMMoV), whereas that conferred by the gene is effective against them all. These resistances are expressed by a hypersensitive response, manifested through the formation of necrotic local lesions (NLLs) at the primary site of infection. The gene confers resistance to (PaMMV), while the gene is effective against both PaMMV and PMMoV. The PaMMV and PMMoV coat proteins (CPs) were expressed in ( ) and ( ) plants using the heterologous (PVX)-based expression system. In ( ) plants, the chimeric PVX virus containing the PaMMV CP was localized in the inoculated leaves and produced NLLs, whereas the chimeric PVX containing the PMMoV CP infected the plants systemically. Thus, the data indicated that the PaMMV CP is the only tobamovirus factor required for the induction of the host response mediated by the resistance gene. In ( ) plants, both chimeric viruses were localized to the inoculated leaves and produced NLLs, indicating that either PaMMV or PMMoV CPs are required to elicit the gene-mediated host response. In addition, transient expression of PaMMV CP into ( ) leaves and PMMoV CP into ( ) leaves by biolistic co-bombardment with a -glucuronidase reporter gene led to the induction of cell death and the expression of host defence genes in both hosts. Thus, the tobamovirus CP is the elicitor of the and gene-mediated hypersensitive response.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80017-0
2004-07-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/7/vir852077.html?itemId=/content/journal/jgv/10.1099/vir.0.80017-0&mimeType=html&fmt=ahah

References

  1. Alonso, E., García-Luque, I., Avila-Rincón, M. J., Wicke, B., Serra, M. T. & Díaz-Ruiz, J. R. ( 1989; ). A tobamovirus causing heavy losses in protected pepper crops in Spain. J Phytopathol 125, 67–76.[CrossRef]
    [Google Scholar]
  2. Bendahmane, A., Kanyuka, K. & Baulcombe, D. C. ( 1999; ). The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–791.[CrossRef]
    [Google Scholar]
  3. Berzal-Herranz, A., de la Cruz, A., Tenllado, F., Díaz-Ruíz, J. R., López, L., Sanz, A. I., Vaquero, C., Serra, M. T. & García-Luque, I. ( 1995; ). The Capsicum L 3 gene-mediated resistance against tobamovirus is elicited by the coat protein. Virology 209, 498–505.[CrossRef]
    [Google Scholar]
  4. Boukema, I. W. ( 1980; ). Allelism of genes controlling resistance to TMV in Capsicum L. Euphytica 29, 433–439.[CrossRef]
    [Google Scholar]
  5. Boukema, I. W. ( 1982; ). Resistance to TMV in Capsicum chacoense Hunz. is governed by an allele of the L-locus. Capsicum Newsl 3, 47–48.
    [Google Scholar]
  6. Castresana, C., de Carvalho, F., Gheysen, G., Habets, M., Inzé, D. & van Montagu, M. ( 1990; ). Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia β-1,3-glucanase gene. Plant Cell 2, 1131–1143.
    [Google Scholar]
  7. Chapman, S., Kavanagh, T. & Baulcombe, D. C. ( 1992; ). Potato virus X as a vector for gene expression in plants. Plant J 2, 549–557.
    [Google Scholar]
  8. Culver, J. N. ( 2002; ). Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. Annu Rev Phytopathol 40, 287–308.[CrossRef]
    [Google Scholar]
  9. Dangl, J. L. & Jones, J. D. ( 2001; ). Plant pathogens and integrated defence responses to infection. Nature 411, 826–833.[CrossRef]
    [Google Scholar]
  10. Dardick, C. D., Taraporewala, Z., Lu, B. & Culver, J. N. ( 1999; ). Comparison of tobamovirus coat protein structural features that affect elicitor activity in pepper, eggplant, and tobacco. Mol Plant Microbe Interact 12, 247–251.[CrossRef]
    [Google Scholar]
  11. de la Cruz, A., López, L., Tenllado, F., Díaz-Ruíz, J. R., Sanz, A. I., Vaquero, C., Serra, M. T. & García-Luque, I. ( 1997; ). The coat protein is required for the elicitation of the Capsicum L2 gene-mediated resistance against the tobamoviruses. Mol Plant Microbe Interact 10, 107–113.[CrossRef]
    [Google Scholar]
  12. Dowson Day, M. J., Ashurst, J. L. & Dixon, R. A. ( 1994; ). Plant expression cassettes for enhanced translation efficiency. Plant Mol Biol Reptr 12, 347–357.[CrossRef]
    [Google Scholar]
  13. Flor, H. H. ( 1971; ). Current status of the gene-for-gene concept. Annu Rev Phytopathol 9, 275–296.[CrossRef]
    [Google Scholar]
  14. Gabriel, D. W. & Rolfe, B. G. ( 1990; ). Working models of specific recognition in plant–microbe interactions. Annu Rev Phytopathol 28, 365–391.[CrossRef]
    [Google Scholar]
  15. García-Luque, I., Serra, M. T., Alonso, E., Wicke, B. & Díaz-Ruíz, J. R. ( 1990; ). Characterization of a Spanish strain of pepper mild mottle virus (PMMV-S) and its relationship to other tobamoviruses. J Phytopathol 129, 1–8.[CrossRef]
    [Google Scholar]
  16. García-Luque, I., Ferrero, M. L., Rodríguez, J. M., Alonso, E., de la Cruz, A., Sanz, A. I., Vaquero, C., Serra, M. T. & Díaz-Ruíz, J. R. ( 1993; ). The nucleotide sequence of the coat protein genes and 3′ non-coding regions of two resistance-breaking tobamoviruses in pepper shows that they are different viruses. Arch Virol 131, 75–88.[CrossRef]
    [Google Scholar]
  17. Gilardi, P., García-Luque, I. & Serra, M. T. ( 1998; ). Pepper mild mottle virus coat protein alone can elicit the Capsicum spp. L 3 gene-mediated resistance. Mol Plant Microbe Interact 11, 1253–1257.[CrossRef]
    [Google Scholar]
  18. Gilardi, P., Wicke, B., Castillo, S., de la Cruz, A., Serra, M. T. & García-Luque, I. ( 1999; ). Resistance in Capsicum spp. against the tobamoviruses. In Recent Research Developments in Virology, vol. 1, pp 547–558. Edited by S. G. Pandalai. India: Transworld Research Network.
  19. Goodman, R. N. & Novacky, A. J. ( 1994; ). The hypersensitive reaction of plants to pathogens. In A Resistance Phenomenon. St Paul, MN: APS Press.
  20. Gopalan, S., Bauer, D. W., Alfano, J. R., Loniello, A. O., He, S. Y. & Collmer, A. ( 1996; ). Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell 8, 1095–1105.[CrossRef]
    [Google Scholar]
  21. Hammond-Kosack, K. E. & Jones, J. D. G. ( 1996; ). Resistance gene-dependent plant defense responses. Plant Cell 8, 1773–1791.[CrossRef]
    [Google Scholar]
  22. Holmes, F. O. ( 1934; ). Inheritance of ability to localize tobacco mosaic virus. Phytopathology 24, 984–1002.
    [Google Scholar]
  23. Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. ( 1987; ). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6, 3901–3907.
    [Google Scholar]
  24. Jia, Y., McAdams, S. A., Bryan, G. T., Hershey, H. P. & Valent, B. ( 2000; ). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19, 4004–4014.[CrossRef]
    [Google Scholar]
  25. Keen, N. T. ( 1990; ). Gene-for-gene complementarity in plant–pathogen interactions. Annu Rev Genet 24, 447–463.[CrossRef]
    [Google Scholar]
  26. Klement, Z. ( 1982; ). Hypersensitivity. In Phytopathogenic Prokaryotes, pp. 149–177. Edited by M. S. Mount & G. H. Lacy. New York: Academic Press.
  27. Leister, R. T. & Katagiri, F. ( 2000; ). A resistance gene product of the nucleotide binding site leucine-rich repeats class can form a complex with bacterial avirulence proteins in vivo. Plant J 22, 345–354.[CrossRef]
    [Google Scholar]
  28. Leister, R. T., Ausubel, F. M. & Katagiri, F. ( 1996; ). Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1. Proc Natl Acad Sci U S A 93, 15497–15502.[CrossRef]
    [Google Scholar]
  29. Logemann, J., Schell, J. & Willmitzer, L. ( 1987; ). Improved method for the isolation of RNA from plant tissues. Anal Biochem 163, 16–20.[CrossRef]
    [Google Scholar]
  30. Martin, G. B., Bogdanove, A. J. & Sessa, G. ( 2003; ). Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54, 23–61.[CrossRef]
    [Google Scholar]
  31. Mestre, P., Brigneti, G. & Baulcombe, D. C. ( 2000; ). An Ry-mediated resistance response in potato requires the intact active site of the Nia proteinase from potato virus Y. Plant J 23, 653–661.[CrossRef]
    [Google Scholar]
  32. Mindrinos, M., Katagiri, F., Yu, G.-L. & Ausubel, F. M. ( 1994; ). The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78, 1089–1099.[CrossRef]
    [Google Scholar]
  33. Nimchuk, Z., Eulgem, T., Holt, B. F., III & Dangl, J. L. ( 2003; ). Recognition and response in the plant immune system. Annu Rev Genet 37, 579–609.[CrossRef]
    [Google Scholar]
  34. Rast, A. Th. B. ( 1979; ). Pepper strains of TMV in the Netherlands. Meded Fac Landbouwkd Rijksuniv Gent 44, 617–622.
    [Google Scholar]
  35. Ruíz del Pino, M., Moreno, A., García de Lacoba, M., Castillo-Lluva, S., Gilardi, P., Serra, M. T. & García-Luque, I. ( 2003; ). Biological and molecular characterization of P101 isolate, a tobamoviral pepper strain from Bulgaria. Arch Virol 148, 2115–2135.[CrossRef]
    [Google Scholar]
  36. Schulze-Lefert, P. ( 2004; ). Plant immunity: the origami of receptor activation. Curr Biol 14, R22–R24.[CrossRef]
    [Google Scholar]
  37. Scofield, S. R., Tobias, C. M., Rathjen, J. P., Chang, J. H., Lavelle, D. T., Michelmore, R. W. & Staskawicz, B. J. ( 1996; ). Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274, 2063–2065.[CrossRef]
    [Google Scholar]
  38. Tang, X. Y., Frederick, R. D., Zhou, J. M., Halterman, D. A., Jia, Y. L. & Martin, G. B. ( 1996; ). Initiation of plant disease resistance by physical interaction of avrpto and pto kinase. Science 274, 2060–2063.[CrossRef]
    [Google Scholar]
  39. Tao, Y., Yuan, F., Leister, R. T., Ausubel, F. M. & Katagiri, F. ( 2000; ). Mutational analysis of the Arabidopsis nucleotide binding site–leucine-rich repeat resistance gene RPS2. Plant Cell 12, 2541–2554.
    [Google Scholar]
  40. Tenllado, F., García-Luque, I., Serra, M. T. & Díaz-Ruíz, J. R. ( 1994; ). Rapid detection and differentiation of tobamoviruses infecting L-resistant genotypes of pepper by RT-PCR and restriction analysis. J Virol Methods 47, 165–174.[CrossRef]
    [Google Scholar]
  41. Tenllado, F., García Luque, I., Serra, M. T. & Díaz Ruiz, J. R. ( 1995; ). Nicotiana benthamiana plants transformed with the 54-kDa region of the pepper mild mottle tobamovirus replicase gene exhibit two types of resistance responses against viral infection. Virology 211, 170–183.[CrossRef]
    [Google Scholar]
  42. Tsuda, S., Kirita, M. & Watanabe, Y. ( 1998; ). Characterization of a pepper mild mottle tobamovirus strain capable of overcoming the L 3 gene-mediated resistance, distinct from the resistance-breaking Italian isolate. Mol Plant Microbe Interact 11, 327–331.[CrossRef]
    [Google Scholar]
  43. van der Biezen, E. A. & Jones, J. D. G. ( 1998; ). Plant disease resistance proteins and the ‘gene-for-gene’ concept. Trends Biochem Sci 23, 454–456.[CrossRef]
    [Google Scholar]
  44. Wetter, C., Conti, M., Altschuh, D., Tabillion, R. & van Regenmortel, M. H. V. ( 1984; ). Pepper mild mottle virus, a tobamovirus infecting pepper cultivars in Sicily. Phytopathology 74, 405–410.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80017-0
Loading
/content/journal/jgv/10.1099/vir.0.80017-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error