1887

Abstract

The ability of virus-specific CD8 T cells to produce cytokines was studied in mice infected with lymphocytic choriomeningitis virus and vesicular stomatitis virus. Intracellular staining was used to visualize cytokine-producing CD8 and CD4 T cells. Overall, virus-specific CD8 T cells produce a similar range of cytokines (IFN-, TNF-, IL-2, GM-CSF, RANTES, MIP-1 and MIP-1) as CD4 T cells, but the relative distribution of cytokine-producing subsets is different. Moreover, cytokine-producing CD8 T cells were found to dominate numerically at all time-points tested. Co-staining for more than one cytokine revealed that while all cytokine-producing CD8 T cells synthesized IFN-, additional cytokines were produced by partly overlapping subsets of this population. The frequency of cells producing more than one cytokine was higher in a tertiary site (peritoneum) and generally increased with transition into the memory phase; however, GM-CSF producing cells were only present transiently. Concerning factors predicted to influence the distribution of cytokine-producing subsets, IFN- and IL-12 did not play a role, nor was extensive virus replication essential. Notably, regarding the heterogeneity in cytokine production by individual cells with similar epitope specificity, variation in TCR avidity was not the cause, since -activated TCR transgene-expressing cells were as heterogeneous in cytokine expression as polyclonal cells specific for the same epitope.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79903-0
2004-06-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851703.html?itemId=/content/journal/jgv/10.1099/vir.0.79903-0&mimeType=html&fmt=ahah

References

  1. Andersen, C., Jensen, T., Nansen, A., Marker, O. & Thomsen, A. R. ( 1999; ). CD4+ T cell-mediated protection against a lethal outcome of systemic infection with vesicular stomatitis virus requires CD40 ligand expression, but not IFN-gamma or IL-4. Int Immunol 11, 2035–2042.[CrossRef]
    [Google Scholar]
  2. Andreasen, S. O., Christensen, J. E., Marker, O. & Thomsen, A. R. ( 2000; ). Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses. J Immunol 164, 3689–3697.[CrossRef]
    [Google Scholar]
  3. Binder, D. & Kundig, T. M. ( 1991; ). Antiviral protection by CD8+ versus CD4+ T cells. CD8+ T cells correlating with cytotoxic activity in vitro are more efficient in antivaccinia virus protection than CD4-dependent IL. J Immunol 146, 4301–4307.
    [Google Scholar]
  4. Butz, E. A. & Bevan, M. J. ( 1998; ). Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175.[CrossRef]
    [Google Scholar]
  5. Cerwenka, A., Carter, L. L., Reome, J. B., Swain, S. L. & Dutton, R. W. ( 1998; ). In vivo persistence of CD8 polarized T cell subsets producing type 1 or type 2 cytokines. J Immunol 161, 97–105.
    [Google Scholar]
  6. Christensen, J. P., Ropke, C. & Thomsen, A. R. ( 1996a; ). Virus-induced polyclonal T cell activation is followed by apoptosis: partitioning of CD8+ T cells based on alpha 4 integrin expression. Int Immunol 8, 707–715.[CrossRef]
    [Google Scholar]
  7. Christensen, J. P., Stenvang, J. P., Marker, O. & Thomsen, A. R. ( 1996b; ). Characterization of virus-primed CD8+ T cells with a type 1 cytokine profile. Int Immunol 8, 1453–1461.[CrossRef]
    [Google Scholar]
  8. Christensen, J. P., Bartholdy, C., Wodarz, D. & Thomsen, A. R. ( 2001; ). Depletion of CD4+ T cells precipitates immunopathology in immunodeficient mice infected with a noncytocidal virus. J Immunol 166, 3384–3391.[CrossRef]
    [Google Scholar]
  9. Christensen, J. E., Christensen, J. P., Kristensen, N. N., Hansen, N. J., Stryhn, A. & Thomsen, A. R. ( 2002; ). Role of CD28 co-stimulation in generation and maintenance of virus-specific T cells. Int Immunol 14, 701–711.[CrossRef]
    [Google Scholar]
  10. Conlon, K., Osborne, J., Morimoto, C., Ortaldo, J. R. & Young, H. A. ( 1995; ). Comparison of lymphokine secretion and mRNA expression in the CD45RA+ and CD45RO+ subsets of human peripheral blood CD4+ and CD8+ lymphocytes. Eur J Immunol 25, 644–648.[CrossRef]
    [Google Scholar]
  11. Croft, M., Carter, L., Swain, S. L. & Dutton, R. W. ( 1994; ). Generation of polarized antigen-specific CD8 effector populations: reciprocal action of interleukin (IL)-4 and IL-12 in promoting type 2 versus type 1 cytokine profiles. J Exp Med 180, 1715–1728.[CrossRef]
    [Google Scholar]
  12. Foulds, K. E., Zenewicz, L. A., Shedlock, D. J., Jiang, J., Troy, A. E. & Shen, H. ( 2002; ). Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J Immunol 168, 1528–1532.[CrossRef]
    [Google Scholar]
  13. Homann, D., Teyton, L. & Oldstone, M. B. ( 2001; ). Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat Med 7, 913–919.[CrossRef]
    [Google Scholar]
  14. Itoh, Y. & Germain, R. N. ( 1997; ). Single cell analysis reveals regulated hierarchical T cell antigen receptor signaling thresholds and intraclonal heterogeneity for individual cytokine responses of CD4+ T cells. J Exp Med 186, 757–766.[CrossRef]
    [Google Scholar]
  15. Kagi, D. & Hengartner, H. ( 1996; ). Different roles for cytotoxic T cells in the control of infections with cytopathic versus noncytopathic viruses. Curr Opin Immunol 8, 472–477.[CrossRef]
    [Google Scholar]
  16. Kagi, D., Ledermann, B., Burki, K., Seiler, P., Odermatt, B., Olsen, K. J., Podack, E. R., Zinkernagel, R. M. & Hengartner, H. ( 1994; ). Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37.[CrossRef]
    [Google Scholar]
  17. Kelso, A., Glasebrook, A. L., Kanagawa, O. & Brunner, K. T. ( 1982; ). Production of macrophage-activating factor by T lymphocyte clones and correlation with other lymphokine activities. J Immunol 129, 550–556.
    [Google Scholar]
  18. Kristensen, N. N., Christensen, J. P. & Thomsen, A. R. ( 2002; ). High numbers of IL-2-producing CD8+ T cells during viral infection: correlation with stable memory development. J Gen Virol 83, 2123–2133.
    [Google Scholar]
  19. Le Gros, G. & Erard, F. ( 1994; ). Non-cytotoxic, IL-4, IL-5, IL-10 producing CD8+ T cells: their activation and effector functions. Curr Opin Immunol 6, 453–457.[CrossRef]
    [Google Scholar]
  20. Liew, F. Y. ( 2002; ). TH1 and TH2 cells: a historical perspective. Nat Rev Immunol 2, 55–60.[CrossRef]
    [Google Scholar]
  21. Lukacher, A. E., Braciale, V. L. & Braciale, T. J. ( 1984; ). In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific. J Exp Med 160, 814–826.[CrossRef]
    [Google Scholar]
  22. Maggi, E., Giudizi, M. G., Biagiotti, R. & 8 other authors ( 1994; ). Th2-like CD8+ T cells showing B cell helper function and reduced cytolytic activity in human immunodeficiency virus type 1 infection. J Exp Med 180, 489–495.[CrossRef]
    [Google Scholar]
  23. Marker, O. & Volkert, M. ( 1973; ). Studies on cell-mediated immunity to lymphocytic choriomeningitis virus in mice. J Exp Med 137, 1511–1525.[CrossRef]
    [Google Scholar]
  24. Marker, O., Scheynius, A., Christensen, J. P. & Thomsen, A. R. ( 1995; ). Virus-activated T cells regulate expression of adhesion molecules on endothelial cells in sites of infection. J Neuroimmunol 62, 35–42.[CrossRef]
    [Google Scholar]
  25. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. ( 2001; ). Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417.[CrossRef]
    [Google Scholar]
  26. Morris, A. G., Lin, Y. L. & Askonas, B. A. ( 1982; ). Immune interferon release when a cloned cytotoxic T-cell line meets its correct influenza-infected target cell. Nature 295, 150–152.[CrossRef]
    [Google Scholar]
  27. Mosmann, T. R. & Sad, S. ( 1996; ). The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17, 138–146.[CrossRef]
    [Google Scholar]
  28. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. ( 1986; ). Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136, 2348–2357.
    [Google Scholar]
  29. Murali-Krishna, K., Altman, J. D., Suresh, M., Sourdive, D. J., Zajac, A. J., Miller, J. D., Slansky, J. & Ahmed, R. ( 1998; ). Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187.[CrossRef]
    [Google Scholar]
  30. Nansen, A., Jensen, T., Christensen, J. P., Andreasen, S. O., Ropke, C., Marker, O. & Thomsen, A. R. ( 1999; ). Compromised virus control and augmented perforin-mediated immunopathology in IFN-γ-deficient mice infected with lymphocytic choriomeningitis virus. J Immunol 163, 6114–6122.
    [Google Scholar]
  31. Oxenius, A., Karrer, U., Zinkernagel, R. M. & Hengartner, H. ( 1999; ). IL-12 is not required for induction of type 1 cytokine responses in viral infections. J Immunol 162, 965–973.
    [Google Scholar]
  32. Paliard, X., de Waal Malefijt, R., Yssel, H., Blanchard, D., Chretien, I., Abrams, J., de Vries, J. & Spits, H. ( 1988; ). Simultaneous production of IL-2, IL-4, and IFN-γ by activated human CD4+ and CD8+ T cell clones. J Immunol 141, 849–855.
    [Google Scholar]
  33. Pircher, H., Burki, K., Lang, R., Hengartner, H. & Zinkernagel, R. M. ( 1989; ). Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561.[CrossRef]
    [Google Scholar]
  34. Prystowsky, M. B., Ely, J. M., Beller, D. I. & 9 other authors ( 1982; ). Alloreactive cloned T cell lines. VI. Multiple lymphokine activities secreted by helper and cytolytic cloned T lymphocytes. J Immunol 129, 2337–2344.
    [Google Scholar]
  35. Ruedl, C., Kopf, M. & Bachmann, M. F. ( 1999; ). CD8+ T cells mediate CD40-independent maturation of dendritic cells in vivo. J Exp Med 189, 1875–1884.[CrossRef]
    [Google Scholar]
  36. Sad, S., Marcotte, R. & Mosmann, T. R. ( 1995; ). Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity 2, 271–279.[CrossRef]
    [Google Scholar]
  37. Salgame, P., Abrams, J. S., Clayberger, C., Goldstein, H., Convit, J., Modlin, R. L. & Bloom, B. R. ( 1991; ). Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254, 279–282.[CrossRef]
    [Google Scholar]
  38. Schijns, V. E., Haagmans, B. L., Rijke, E. O., Huang, S., Aguet, M. & Horzinek, M. C. ( 1994; ). IFN-γ receptor-deficient mice generate antiviral Th1-characteristic cytokine profiles but altered antibody responses. J Immunol 153, 2029–2037.
    [Google Scholar]
  39. Slifka, M. K. & Whitton, J. L. ( 2000; ). Activated and memory CD8+ T cells can be distinguished by their cytokine profiles and phenotypic markers. J Immunol 164, 208–216.[CrossRef]
    [Google Scholar]
  40. Thomsen, A. R., Nansen, A., Andersen, C., Johansen, J., Marker, O. & Christensen, J. P. ( 1997; ). Cooperation of B cells and T cells is required for survival of mice infected with vesicular stomatitis virus. Int Immunol 9, 1757–1766.[CrossRef]
    [Google Scholar]
  41. Valitutti, S., Muller, S., Dessing, M. & Lanzavecchia, A. ( 1996; ). Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J Exp Med 183, 1917–1921.[CrossRef]
    [Google Scholar]
  42. Varga, S. M. & Welsh, R. M. ( 2000; ). High frequency of virus-specific interleukin-2-producing CD4+ T cells and Th1 dominance during lymphocytic choriomeningitis virus infection. J Virol 74, 4429–4432.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79903-0
Loading
/content/journal/jgv/10.1099/vir.0.79903-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error