1887

Abstract

Measles virus (MV)-infected cells are activators of the alternative human complement pathway, resulting in high deposition of C3b on the cell surface. Activation was observed independent of whether CD46 was used as a cellular receptor and did not correlate with CD46 down-regulation. The virus itself was an activator of the alternative pathway and was covered by C3b/C3bi, resulting in some loss in infectivity without loss of virus binding to target cells. The cell surface expression of MV fusion (F), but not haemagglutinin, envelope protein resulted in complement activation of the Factor B-dependent alternative pathway in a dose-dependent manner and F–C3b complexes were formed. The underlying activation mechanism was not related to any decrease in cell surface expression of the complement regulators CD46 and CD55. The C3b/C3bi coating of MV-infected cells and virus should ensure enhanced targeting of MV antigens to the immune system, through binding to complement receptors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79880-0
2004-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851665.html?itemId=/content/journal/jgv/10.1099/vir.0.79880-0&mimeType=html&fmt=ahah

References

  1. Adams, E. M., Brown, M. C., Nunge, M., Krych, M. & Atkinson, J. P. ( 1991; ). Contribution of the repeating domains of membrane cofactor protein (CD46) of the complement system to ligand binding and cofactor activity. J Immunol 147, 3005–3011.
    [Google Scholar]
  2. Aderem, A. & Ulevitch, R. J. ( 2000; ). Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787.[CrossRef]
    [Google Scholar]
  3. Auwaerter, P. G., Rota, P. A., Elkins, W. R., Adams, R. J., DeLozier, T., Shi, Y., Bellini, W. J., Murphy, B. R. & Griffin, D. E. ( 1999; ). Measles virus infection in rhesus macaques: altered immune responses and comparison of the virulence of six different virus strains. J Infect Dis 180, 950–958.[CrossRef]
    [Google Scholar]
  4. Buchholz, C. J., Schneider, U., Devaux, P., Gerlier, D. & Cattaneo, R. ( 1996; ). Cell entry by measles virus: long hybrid receptors uncouple binding from membrane fusion. J Virol 70, 3716–3723.
    [Google Scholar]
  5. Buchholz, C. J., Koller, D., Devaux, P., Mumenthaler, C., Schneider-Schaulies, J., Braun, W., Gerlier, D. & Cattaneo, R. ( 1997; ). Mapping of the primary binding site of measles virus to its receptor CD46. J Biol Chem 272, 22072–22079.[CrossRef]
    [Google Scholar]
  6. Caudwell, V., Porteu, F., Calender, A., Pangburn, M. K. & Halbwachs-Mecarelli, L. ( 1990; ). Complement alternative pathway activation and control on membranes of human lymphoid B cell lines. Eur J Immunol 20, 2643–2650.[CrossRef]
    [Google Scholar]
  7. Christiansen, D., Deléage, G. & Gerlier, D. ( 2000a; ). Evidence for distinct complement regulatory and measles virus binding sites on CD46 SCR2. Eur J Immunol 30, 3457–3462.[CrossRef]
    [Google Scholar]
  8. Christiansen, D., Loveland, B., Kyriakou, P., Lanteri, M., Rubinstein, E. & Gerlier, D. ( 2000b; ). Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation. Mol Immunol 37, 687–696.[CrossRef]
    [Google Scholar]
  9. Dempsey, P. W., Allison, M. E. D., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. ( 1996; ). C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350.[CrossRef]
    [Google Scholar]
  10. Devaux, P., Christiansen, D., Fontaine, M. & Gerlier, D. ( 1999; ). Control of C3b and C5b deposition by CD46 (membrane cofactor protein) after alternative but not classical complement activation. Eur J Immunol 29, 815–822.[CrossRef]
    [Google Scholar]
  11. Dierich, M. P., Ebenbichler, C. F., Marschang, P., Füst, G., Thielens, N. M. & Arlaud, G. J. ( 1993; ). HIV and human complement: mechanisms of interaction and biological implication. Immunol Today 14, 435–440.[CrossRef]
    [Google Scholar]
  12. Dörig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. ( 1993; ). The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305.[CrossRef]
    [Google Scholar]
  13. Ebenbichler, C. F., Thielens, N. M., Vornhagen, R., Marschang, P., Arlaud, G. J. & Dierich, M. P. ( 1991; ). Human immunodeficiency virus type 1 activates the classical pathway of complement by direct C1 binding through specific sites in the transmembrane glycoprotein gp41. J Exp Med 174, 1417–1424.[CrossRef]
    [Google Scholar]
  14. Erlenhoefer, C., Wurzer, W. J., Löffler, S., Schneider-Schaulies, S., ter Meulen, V. & Schneider-Schaulies, J. ( 2001; ). CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75, 4499–4505.[CrossRef]
    [Google Scholar]
  15. Fayolle, J., Verrier, B., Buckland, R. & Wild, T. F. ( 1999; ). Characterization of a natural mutation in an antigenic site on the fusion protein of measles virus that is involved in neutralization. J Virol 73, 787–790.
    [Google Scholar]
  16. Fearon, D. T. ( 2000; ). Innate immunity – beginning to fulfill its promise? Nat Immunol 1, 102–103.[CrossRef]
    [Google Scholar]
  17. Fugier-Vivier, I., Servet-Delprat, C., Rivailler, P., Rissoan, M. C., Liu, Y. J. & Rabourdin-Combe, C. ( 1997; ). Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186, 813–823.[CrossRef]
    [Google Scholar]
  18. Fulginiti, V. A., Eller, J. J., Downie, A. W. & Kempe, C. H. ( 1967; ). Altered reactivity to measles virus: atypical measles in children previously immunized with inactivated measles virus vaccines. JAMA 202, 1075–1080.[CrossRef]
    [Google Scholar]
  19. Griffin, D. E., Ward, B. J. & Esolen, L. M. ( 1994; ). Pathogenesis of measles virus infection: an hypothesis for altered immune responses. J Infect Dis 170, S24–31.[CrossRef]
    [Google Scholar]
  20. Harris, C. L., Spiller, O. B. & Morgan, B. P. ( 2000; ). Human and rodent decay-accelerating factors (CD55) are not species restricted in their complement-inhibiting activities. Immunology 100, 462–470.[CrossRef]
    [Google Scholar]
  21. Hicks, J. T., Sullivan, J. L. & Albrecht, P. ( 1977; ). Immune responses during measles infection in immunosuppressed Rhesus monkeys. J Immunol 119, 1452–1456.
    [Google Scholar]
  22. Hirsch, R. L., Griffin, D. E., Johnson, R. T., Cooper, S. J., Lindo de Soriano, I., Roedenbeck, S. & Vaisberg, A. ( 1984; ). Cellular immune responses during complicated and uncomplicated measles virus infections of man. Clin Immunol Immunopathol 31, 1–12.[CrossRef]
    [Google Scholar]
  23. Iwata, K., Seya, T., Yanagi, Y., Pesando, J. M., Johnson, P. M., Okabe, M., Ueda, S., Ariga, H. & Nagasawa, S. ( 1995; ). Diversity of sites for measles virus binding and for inactivation of complement C3b and C4b on membrane cofactor protein CD46. J Biol Chem 270, 15148–15152.[CrossRef]
    [Google Scholar]
  24. Kapadia, S. B., Levine, B., Speck, S. H. & Virgin, H. W. T. ( 2002; ). Critical role of complement and viral evasion of complement in acute, persistent, and latent gamma-herpesvirus infection. Immunity 17, 143–155.[CrossRef]
    [Google Scholar]
  25. Karp, C. L. ( 1999; ). Measles: immunosuppression, interleukin-12, and complement receptors. Immunol Rev 168, 91–101.[CrossRef]
    [Google Scholar]
  26. Karp, C. L., Wysocka, M., Wahl, L. M., Aheam, J. M., Cuomo, P. J., Sherry, B., Trinchieri, G. & Griffin, D. ( 1996; ). Mechanism of suppression of cell-mediated immunity by measles virus. Science 273, 228–231.[CrossRef]
    [Google Scholar]
  27. Kojima, A., Iwata, K., Seya, T., Matsumoto, M., Ariga, H., Atkinson, J. P. & Nagasawa, S. ( 1993; ). Membrane cofactor protein (CD46) protects cells predominantly from alternative complement pathway-mediated C3-fragment deposition and cytolysis. J Immunol 151, 1519–1527.
    [Google Scholar]
  28. Krantic, S., Gimenez, C. & Rabourdin-Combe, C. ( 1995; ). Cell-to-cell contact via measles virus haemagglutinin–CD46 interaction triggers CD46 downregulation. J Gen Virol 76, 2793–2800.[CrossRef]
    [Google Scholar]
  29. Lecouturier, V., Fayolle, J., Caballero, M., Carabana, J., Celma, M. L., Fernandez-Munoz, R., Wild, T. F. & Buckland, R. ( 1996; ). Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. J Virol 70, 4200–4204.
    [Google Scholar]
  30. Liszewski, M. K., Post, T. W. & Atkinson, J. P. ( 1991; ). Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol 9, 431–455.[CrossRef]
    [Google Scholar]
  31. Liszewski, M. K., Leung, M., Cui, W., Subramanian, V. B., Parkinson, J., Barlow, P., Manchester, M. & Atkinson, J. P. ( 2000; ). Dissecting sites important for complement regulatory activity in membrane cofactor protein (MCP; CD46). J Biol Chem 275, 37692–37701.[CrossRef]
    [Google Scholar]
  32. Lozahic, S., Christiansen, D., Manié, S., Gerlier, D., Billard, M., Boucheix, C. & Rubinstein, E. ( 2000; ). CD46 associates with multiple β1 integrins and tetraspans. Eur J Immunol 30, 900–907.[CrossRef]
    [Google Scholar]
  33. Manchester, M., Valsamakis, A., Kaufman, R., Liszewski, M. K., Alvarez, J., Atkinson, J. P., Lublin, D. M. & Oldstone, M. B. A. ( 1995; ). Measles virus and C3 binding sites are distinct on membrane cofactor protein (CD46). Proc Natl Acad Sci U S A 92, 2303–2307.[CrossRef]
    [Google Scholar]
  34. Manie, S. N., Debreyne, S., Vincent, S. & Gerlier, D. ( 2000; ). Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J Virol 74, 305–311.[CrossRef]
    [Google Scholar]
  35. Mold, C., Bradt, B. M., Nemerow, G. R. & Cooper, N. R. ( 1988; ). Epstein–Barr virus regulates activation and processing of the third component of complement. J Exp Med 168, 949–969.[CrossRef]
    [Google Scholar]
  36. Murakami, Y., Seya, T., Kurita, M., Fukui, A., Ueda, S. & Nagasawa, S. ( 1998; ). Molecular cloning of membrane cofactor protein (MCP; CD46) on B95a cell, an Epstein–Barr virus-transformed marmoset B cell line: B95a-MCP is susceptible to infection by the CAM, but not the Nagahata strain of the measles virus. Biochem J 330, 1351–1359.
    [Google Scholar]
  37. Naniche, D., Varior-Krishnan, G., Cervoni, F., Wild, T. F., Rossi, B., Rabourdin-Combe, C. & Gerlier, D. ( 1993a; ). Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67, 6025–6032.
    [Google Scholar]
  38. Naniche, D., Wild, T. F., Rabourdin-Combe, C. & Gerlier, D. ( 1993b; ). Measles virus haemagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. J Gen Virol 74, 1073–1079.[CrossRef]
    [Google Scholar]
  39. Oglesby, T. J., Allen, C. J., Liszewski, M. K., White, D. J. & Atkinson, J. P. ( 1992; ). Membrane cofactor protein (CD46) protects cells from complement-mediated attack by an intrinsic mechanism. J Exp Med 175, 1547–1551.[CrossRef]
    [Google Scholar]
  40. Richardson, C. D. & Choppin, P. W. ( 1983; ). Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: studies on the site of action. Virology 131, 518–532.[CrossRef]
    [Google Scholar]
  41. Sahu, A. & Lambris, J. D. ( 2001; ). Structure and biology of complement C3, a connecting link between innate and acquired immunity. Immunol Rev 180, 35–48.[CrossRef]
    [Google Scholar]
  42. Schneider-Schaulies, J., Dunster, L. M., Kobune, F., Rima, B. & ter Meulen, V. ( 1995; ). Differential downregulation of CD46 by measles virus strains. J Virol 69, 7257–7259.
    [Google Scholar]
  43. Schnorr, J. J., Dunster, L. M., Nanan, R., Schneider-Schaulies, J., Schneider-Schaulies, S. & ter Meulen, V. ( 1995; ). Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells. Eur J Immunol 25, 976–984.[CrossRef]
    [Google Scholar]
  44. Seya, T. & Atkinson, J. P. ( 1989; ). Functional properties of membrane cofactor protein of complement. Biochem J 264, 581–588.
    [Google Scholar]
  45. Sissons, J. G. P., Schreiber, R. D., Perrin, L. H., Cooper, N. R., Muller-Eberhard, H. J. & Oldstone, M. B. A. ( 1979; ). Lysis of measles virus-infected cells by the purified cytolytic alternative complement pathway and antibody. J Exp Med 150, 415–454.
    [Google Scholar]
  46. Sissons, J. G. P., Oldstone, M. B. A. & Schreiber, R. D. ( 1980; ). Antibody-independent activation of the alternative complement pathway by measles virus-infected cells. Proc Natl Acad Sci U S A 77, 559–562.[CrossRef]
    [Google Scholar]
  47. Solder, B. M., Schulz, T. F., Hengster, P., Lower, J., Larcher, C., Bitterlich, G., Kurth, R., Wachter, H. & Dierich, M. P. ( 1989; ). HIV and HIV-infected cells differentially activate the human complement system independent of antibody. Immunol Lett 22, 135–145.[CrossRef]
    [Google Scholar]
  48. Spiller, O. B. & Morgan, B. P. ( 1998; ). Antibody-independent activation of the classical complement pathway by cytomegalovirus-infected fibroblasts. J Infect Dis 178, 1597–1603.[CrossRef]
    [Google Scholar]
  49. Stein, C. E., Birmingham, M., Kurian, M., Duclos, P. & Strebel, P. ( 2003; ). The global burden of measles in the year 2000 – a model that uses country-specific indicators. J Infect Dis 187, S8–14.[CrossRef]
    [Google Scholar]
  50. Tatsuo, H., Okuma, K., Tanaka, K., Ono, N., Minagawa, H., Takade, A., Matsuura, Y. & Yanagi, Y. ( 2000a; ). Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. J Virol 74, 4139–4145.[CrossRef]
    [Google Scholar]
  51. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. ( 2000b; ). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897.[CrossRef]
    [Google Scholar]
  52. Thieblemont, N., Haeffner-Cavaillon, N., Weiss, L., Maillet, F. & Kazatchkine, M. D. ( 1993; ). Complement activation by gp160 glycoprotein of HIV-1. AIDS Res Hum Retrovir 9, 229–233.[CrossRef]
    [Google Scholar]
  53. Thielens, N. M., Cseh, S., Thiel, S., Vorup-Jensen, T., Rossi, V., Jensenius, J. C. & Arlaud, G. J. ( 2001; ). Interaction properties of human mannan-binding lectin (MBL)-associated serine proteases-1 and -2, MBL-associated protein 19, and MBL. J Immunol 166, 5068–5077.[CrossRef]
    [Google Scholar]
  54. Turner, M. W. ( 1998; ). Mannose-binding lectin (MBL) in health and disease. Immunobiology 199, 327–339.[CrossRef]
    [Google Scholar]
  55. Vincent, S., Gerlier, D. & Manie, S. N. ( 2000; ). Measles virus assembly within membrane rafts. J Virol 74, 9911–9915.[CrossRef]
    [Google Scholar]
  56. Xu, C., Mao, D., Holers, V. M., Palanca, B., Cheng, A. M. & Molina, H. ( 2000; ). A critical role for murine complement regulator crry in fetomaternal tolerance. Science 287, 498–501.[CrossRef]
    [Google Scholar]
  57. Yamanouchi, K., Ohta, H., Kataoka, T., Kobune, F., Yoshikawa, Y. & Tokunaga, T. ( 1981; ). Suppression of delayed hypersensitivity by measles virus infection in guinea pigs. Jpn J Med Sci Biol 34, 81–94.[CrossRef]
    [Google Scholar]
  58. Yant, S., Hirano, A. & Wong, T. C. ( 1997; ). Identification of a cytoplasmic Tyr-X-X-Leu motif essential for down regulation of the human cell receptor CD46 in persistent measles virus infection. J Virol 71, 766–770.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79880-0
Loading
/content/journal/jgv/10.1099/vir.0.79880-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error