1887

Abstract

Human immunodeficiency virus 1 (HIV-1) downregulates cell surface expression of HLA-A and HLA-B but not HLA-C or HLA-E to ultimately escape immune defences. Here, it is shown that cell surface expression of the non-classical HLA-G1 is also downregulated by HIV-1, by using co-transfection experiments and infection with cell-free HIV-1 of HLA-G1-expressing U87 glioma cells or macrophages in primary culture. Moreover, co-transfection experiments using proviruses deleted in either or or plasmids encoding HIV-1 Nef and Vpu mixed together with a HLA-G1-expressing construct demonstrated that HLA-G1 downregulation is Nef-independent and Vpu-dependent, contrasting with the Nef- and Vpu-dependent HLA-A2 downregulation. Together, these results show that the decrease of HLA-A2 and HLA-G1 caused by HIV-1 occurs through distinct mechanisms.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79867-0
2004-07-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/7/vir851945.html?itemId=/content/journal/jgv/10.1099/vir.0.79867-0&mimeType=html&fmt=ahah

References

  1. Adachi, A., Gendelman, H. E., Koenig, S., Folks, T., Willey, R., Rabson, A. & Martin, M. A. ( 1986; ). Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59, 284–291.
    [Google Scholar]
  2. Besnard-Guérin, C., Belaïdouni, N., Lassot, I., Segaral, E., Jobart, A., Marchal, C. & Benarous, R. ( 2004; ). HIV-1 Vpu sequesters β-transducin repeat-containing protein (βTrCP) in the cytoplasm and provokes the accumulation of β-catenin and other SCFβTrCP substrates. J Biol Chem 279, 788–795.[CrossRef]
    [Google Scholar]
  3. Blagoveshchenskaya, A. D., Thomas, L., Feliciangeli, S. F., Hung, C. H. & Thomas, G. ( 2002; ). HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 111, 853–866.[CrossRef]
    [Google Scholar]
  4. Bour, S., Schubert, U. & Strebel, K. ( 1995; ). The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: implications for the mechanism of degradation. J Virol 69, 1510–1520.
    [Google Scholar]
  5. Bour, S., Perrin, C., Akari, H. & Strebel, K. ( 2001; ). The human immunodeficiency virus type 1 Vpu protein inhibits NF-kappa B activation by interfering with beta TrCP-mediated degradation of IkappaB. J Biol Chem 276, 15920–15928.[CrossRef]
    [Google Scholar]
  6. Buonocore, L., Turi, T. G., Crise, B. & Rose, J. K. ( 1994; ). Stimulation of heterologous protein degradation by the Vpu protein of HIV-1 requires the transmembrane and cytoplasmic domains of CD4. Virology 204, 482–486.[CrossRef]
    [Google Scholar]
  7. Cohen, G. B., Gandhi, R. T., Davis, D. M., Mandelboim, O., Chen, B. K., Strominger, J. L. & Baltimore, D. ( 1999; ). The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10, 661–671.[CrossRef]
    [Google Scholar]
  8. Collins, K. L. & Baltimore, D. ( 1999; ). HIV's evasion of the cellular immune response. Immunol Rev 168, 65–74.[CrossRef]
    [Google Scholar]
  9. Corbeau, P., Benkirane, M., Weil, R., David, C., Emiliani, S., Olive, D., Mawas, C., Serre, A. & Devaux, C. ( 1993; ). Ig CDR3-like region of the CD4 molecule is involved in HIV-induced syncytia formation but not in viral entry. J Immunol 150, 290–301.
    [Google Scholar]
  10. Deng, H., Unutmaz, D., KewalRamani, V. N. & Littman, D. R. ( 1997; ). Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388, 296–300.[CrossRef]
    [Google Scholar]
  11. Fisher, S., Genbacev, O., Maidji, E. & Pereira, L. ( 2000; ). Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: implications for transmission and pathogenesis. J Virol 74, 6808–6820.[CrossRef]
    [Google Scholar]
  12. Fournel, F., Aguerre-Girr, M., Huc, X., Lenfant, F., Alam, A., Toubert, A., Bensussan, A. & Le Bouteiller, P. ( 2000; ). Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J Immunol 164, 6100–6104.[CrossRef]
    [Google Scholar]
  13. Geraghty, D. E., Koller, B. H. & Orr, H. T. ( 1987; ). A human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment. Proc Natl Acad Sci U S A 84, 9145–9149.[CrossRef]
    [Google Scholar]
  14. Gromme, M. & Neefjes, J. ( 2002; ). Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol Immunol 39, 181–202.[CrossRef]
    [Google Scholar]
  15. Halary, F., Amara, A., Lortat-Jacob, H. & 7 other authors ( 2002; ). Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17, 653–664.[CrossRef]
    [Google Scholar]
  16. Ishitani, A. & Geraghty, D. E. ( 1992; ). Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc Natl Acad Sci U S A 88, 3947–3951.
    [Google Scholar]
  17. Ishitani, A., Sageshima, N., Lee, N., Dorofeeva, N., Hatake, K., Marquardt, H. & Geraghty, D. E. ( 2003; ). Protein expression and peptide binding suggest unique and interacting functional roles for HLA-E, F, and G in maternal-placental immune recognition. J Immunol 171, 1376–1384.[CrossRef]
    [Google Scholar]
  18. Kerkau, T., Bacik, I., Bennink, J. R., Yewdell, J. W., Hunig, T., Schimpl, A. & Schubert, U. ( 1997; ). The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. J Exp Med 185, 1295–1305.[CrossRef]
    [Google Scholar]
  19. Kikkert, M., Hassink, G., Barel, M., Hirsch, C., Van Der Wal, F. J. & Wiertz, E. ( 2001; ). Ubiquitination is essential for human cytomegalovirus US11-mediated dislocation of MHC class I molecules from the endoplasmic reticulum to the cytosol. Biochem J 358, 369–377.[CrossRef]
    [Google Scholar]
  20. Klimkait, T., Strebel, K., Hoggan, M. D., Martin, M. A. & Orenstein, J. M. ( 1990; ). The human immunodeficiency virus type 1-specific protein Vpu is required for efficient virus maturation and release. J Virol 64, 621–629.
    [Google Scholar]
  21. Le Bouteiller, P. & Blaschitz, A. ( 1999; ). The functionality of HLA-G is emerging. Immunol Rev 167, 233–244.[CrossRef]
    [Google Scholar]
  22. Lee, N., Malacko, A. R., Ishitani, A., Chen, M. C., Bajorath, J., Marquardt, H. & Geraghty, D. E. ( 1995; ). The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 3, 591–600.[CrossRef]
    [Google Scholar]
  23. Lefebvre, S., Antoine, M., Uzan, S., McMaster, M., Dausset, J., Carosella, E. D. & Paul, P. ( 2002; ). Specific activation of the non-classical class I histocompatibility HLA-G antigen and expression of the ILT2 inhibitory receptor in human breast cancer. J Pathol 196, 266–274.[CrossRef]
    [Google Scholar]
  24. Lemonnier, F. A., Le Bouteiller, P., Olive, D. & 7 other authors ( 1984; ). Transformation of LMTK- cells with purified class I genes. V. Antibody-induced structural modification of HLA class I molecules results in potentiation of the fixation of a second monoclonal antibody. J Immunol 132, 1176–1182.
    [Google Scholar]
  25. Lenburg, M. E. & Landau, N. R. ( 1993; ). Vpu-induced degradation of CD4: requirement for specific amino acid residues in the cytoplasmic domain of CD4. J Virol 67, 7238–7245.
    [Google Scholar]
  26. Lenfant, F., Pizzato, N., Liang, S., Davrinche, C., Le Bouteiller, P. & Horuzsko, A. ( 2003; ). Induction of HLA-G-restricted human cytomegalovirus pp65 (UL83)-specific cytotoxic T lymphocytes in HLA-G transgenic mice. J Gen Virol 84, 307–317.[CrossRef]
    [Google Scholar]
  27. Lila, N., Rouas-Freiss, N., Dausset, J., Carpentier, A. & Carosella, E. D. ( 2001; ). Soluble HLA-G protein secreted by allo-specific CD4+ T cells suppresses the allo-proliferative response: a CD4+ T cell regulatory mechanism. Proc Natl Acad Sci U S A 98, 12150–12155.[CrossRef]
    [Google Scholar]
  28. Lopez-Botet, M., Llano, M., Navarro, F. & Bellon, T. ( 2000; ). NK cell recognition of non-classical HLA class I molecules. Semin Immunol 12, 109–119.[CrossRef]
    [Google Scholar]
  29. Lozano, J. M., Gonzalez, R., Kindelan, J. M., Rouas-Freiss, N., Caballos, R., Dausset, J., Carosella, E. D. & Pena, J. ( 2002; ). Monocytes and T lymphocytes in HIV-1-positive patients express HLA-G molecule. AIDS 16, 347–351.[CrossRef]
    [Google Scholar]
  30. Onno, M., Pangault, C., Le Friec, G., Guilloux, V., Andre, P. & Fauchet, R. ( 2000; ). Modulation of HLA-G antigens expression by human cytomegalovirus: specific induction in activated macrophages harboring human cytomegalovirus infection. J Immunol 164, 6426–6434.[CrossRef]
    [Google Scholar]
  31. Park, B., Lee, S., Kim, E., Chang, S., Jin, M. & Ahn, K. ( 2001; ). The truncated cytoplasmic tail of HLA-G serves a quality-control function in post-ER compartments. Immunity 15, 213–224.[CrossRef]
    [Google Scholar]
  32. Perez-Bercoff, D., David, A., Sudry, H., Barré-Sinoussi, F. & Pancino, G. ( 2003; ). Fcγ receptor-mediated suppression of HIV replication in primary human macrophages. J Virol 77, 4081–4094.[CrossRef]
    [Google Scholar]
  33. Schust, D. J., Tortorella, D. & Ploegh, H. L. ( 1999; ). HLA-G and HLA-C at the feto-maternal interface: lessons learned from pathogenic viruses. Semin Cancer Biol 9, 37–46.[CrossRef]
    [Google Scholar]
  34. Schwartz, O., Marechal, V., Le Gall, S., Lemonnier, F. & Heard, J. M. ( 1996; ). Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 2, 338–342.[CrossRef]
    [Google Scholar]
  35. Solier, C., Aguerre-Girr, M., Lenfant, F., Campan, A., Berrebi, A., Rebmann, V., Grosse-Wilde, H. & Le Bouteiller, P. ( 2002; ). Secretion of pro-apoptotic intron 4-retaining soluble HLA-G1 by human villous trophoblast. Eur J Immunol 32, 3576–3586.[CrossRef]
    [Google Scholar]
  36. Spencer, J. V., Lockridge, K. M., Barry, P. A., Lin, G., Tsang, M., Penfold, M. E. & Schall, T. J. ( 2002; ). Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol 76, 1285–1292.[CrossRef]
    [Google Scholar]
  37. Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J. & Ploegh, H. L. ( 2000; ). Viral subversion of the immune system. Annu Rev Immunol 18, 861–926.[CrossRef]
    [Google Scholar]
  38. Vincent, M. J., Raja, N. U. & Jabbar, M. A. ( 1993; ). Human immunodeficiency virus type 1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domains of CD4: role of the cytoplasmic domain in Vpu-induced degradation in the endoplasmic reticulum. J Virol 67, 5538–5549.
    [Google Scholar]
  39. Wiendl, H., Mitsdoerffer, M., Hofmeister, V., Wischhusen, J., Bornemann, A., Meyermann, R., Weiss, E. H., Melms, A. & Weller, M. A. ( 2002; ). Functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J Immunol 168, 4772–4780.[CrossRef]
    [Google Scholar]
  40. Williams, M., Roeth, J. F., Kasper, M. R., Fleis, R. I., Przybycin, C. G. & Collins, K. L. ( 2002; ). Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking. J Virol 76, 12173–12184.[CrossRef]
    [Google Scholar]
  41. Yang, Y., Chu, W., Geraghty, D. E. & Hunt, J. S. ( 1996; ). Expression of HLA-G in human mononuclear phagocytes and selective induction by IFN-gamma. J Immunol 156, 4224–4231.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79867-0
Loading
/content/journal/jgv/10.1099/vir.0.79867-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error