1887

Abstract

The core (C) protein of hepatitis C virus (HCV) appears to be a multifunctional protein that is involved in many viral and cellular processes. Although its effects on host cells have been extensively discussed in the literature, little is known about its main function, the assembly and packaging of the viral genome. We have studied the assembly of several deleted versions of recombinant HCV C protein expressed in . We demonstrated that the 75 N-terminal residues of the C protein were sufficient to assemble and generate nucleocapsid-like particles (NLPs) . However, homogeneous particles of regular size and shape were observed only when NLPs were produced from at least the first 79 N-terminal amino acids of the C protein. This small protein unit fused to the endoplasmic reticulum-anchoring domain also generated NLPs in yeast cells. These data suggest that the N-terminal half of the C protein is important for formation of NLPs. Similarities between the HCV C protein and C proteins of other members of the are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79775-0
2004-04-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/4/vir850971.html?itemId=/content/journal/jgv/10.1099/vir.0.79775-0&mimeType=html&fmt=ahah

References

  1. Acharya, N. & Varshney, U. ( 2002; ). Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J Mol Biol 318, 1251–1264.[CrossRef]
    [Google Scholar]
  2. Acosta-Rivero, N., Musacchio, A., Lorenzo, L., Alvarez, C. & Morales, J. ( 2002; ). Processing of the hepatitis C virus precursor protein expressed in the methylotrophic yeast Pichia pastoris. Biochem Biophys Res Commun 295, 81–84.[CrossRef]
    [Google Scholar]
  3. Andre, P., Komurian-Pradel, F., Deforges, S. & 7 other authors ( 2002; ). Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 76, 6919–6928.[CrossRef]
    [Google Scholar]
  4. Baumert, T. F., Ito, S., Wong, D. T. & Liang, T. J. ( 1998; ). Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J Virol 72, 3827–3836.
    [Google Scholar]
  5. Blanchard, E., Brand, D., Trassard, S., Goudeau, A. & Roingeard, P. ( 2002; ). Hepatitis C virus-like particle morphogenesis. J Virol 76, 4073–4079.[CrossRef]
    [Google Scholar]
  6. Choo, Q., Kuo, G., Ralston, R. & 15 other authors ( 1994; ). Vaccination of chimpanzees against infection by the hepatitis C virus. Proc Natl Acad Sci U S A 91, 1294–1298.[CrossRef]
    [Google Scholar]
  7. Cohen, J. ( 1999; ). The scientific challenge of hepatitis C. Science 285, 26–30.[CrossRef]
    [Google Scholar]
  8. Deres, K., Schroder, C. H., Paessens, A. & 17 other authors ( 2003; ). Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science 299, 893–896.[CrossRef]
    [Google Scholar]
  9. Falcon, V., Garcia, C., Rosa, M. C. d, I, Menendez, I., Seoane, J. & Grillo, J. M. ( 1999; ). Ultrastructural and immunocytochemical evidences of core-particle formation in the methylotrophic Pichia pastoris yeast when expressing HCV structural proteins (core-E1). Tissue Cell 31, 117–125.[CrossRef]
    [Google Scholar]
  10. Falcon, V., Acosta-Rivero, N., Chinea, G. & 7 other authors ( 2003; ). Ultrastructural evidences of HCV infection in hepatocytes of chronically HCV-infected patients. Biochem Biophys Res Commun 305, 1085–1090.[CrossRef]
    [Google Scholar]
  11. Grakoui, A., Wychowski, C., Lin, C., Feinstone, S. M. & Rice, C. ( 1993; ). Expression and identification of hepatitis C virus polyprotein cleavage products. J Virol 67, 1385–1395.
    [Google Scholar]
  12. Hijikata, M., Shimizu, Y., Kato, H., Iwamoto, A., Shih, J., Alter, H., Purcell, R. & Yoshikura, H. ( 1993; ). Equilibrium centrifugation studies of hepatitis C virus: evidence for circulating immune complexes. J Virol 67, 1953–1958.
    [Google Scholar]
  13. Hope, R. G. & McLauchlan, J. ( 2000; ). Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J Gen Virol 81, 1913–1925.
    [Google Scholar]
  14. Hope, R. G., Murphy, D. J. & McLauchlan, J. ( 2002; ). The domains required to direct core proteins of hepatitis C virus and GB virus-B to lipid droplets share common features with plant oleosin proteins. J Biol Chem 277, 4261–4270.[CrossRef]
    [Google Scholar]
  15. Hüssy, P., Langen, H., Mous, J. & Jacobsen, H. ( 1996; ). Hepatitis C virus core protein: carboxy-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase. Virology 224, 93–104.[CrossRef]
    [Google Scholar]
  16. Ilari, A., Johnson, K. A., Nastopoulos, V., Verzili, D., Zamparelli, C., Colotti, G., Tsernoglou, D. & Chiancone, E. ( 2002; ). The crystal structure of the sorcin calcium binding protein domain provides a model of Ca2+-dependent processes in the full-length protein. J Mol Biol 317, 447–458.[CrossRef]
    [Google Scholar]
  17. Ishida, S., Masahiko, K., Kohara, M., Tsukiyama-Kohora, K., Fujita, N., Ikoma, J., Adachi, Y. & Watanabe, S. ( 2001; ). Hepatitis virus core particle detected by immunoelectron microscopy and optical rotation technique. Hepatol Res 20, 335–347.[CrossRef]
    [Google Scholar]
  18. Koshy, A., Madda, J. P., Marcellin, P. & Martinot, M. ( 2002; ). Treatment of hepatitis C virus genotype 4-related cirrhosis: ribavirin and interferon combination compared with interferon alone. J Clin Gastroenterol 35, 82–85.[CrossRef]
    [Google Scholar]
  19. Kunkel, M. & Watowich, S. J. ( 2002; ). Conformational changes accompanying self-assembly of the hepatitis C virus core protein. Virology 294, 239–245.[CrossRef]
    [Google Scholar]
  20. Kunkel, M., Lorinczi, M., Rijnbrand, R., Lemon, S. M. & Watowich, S. J. ( 2001; ). Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein. J Virol 75, 2119–2129.[CrossRef]
    [Google Scholar]
  21. Lauer, G. M. & Walker, B. D. ( 2001; ). Hepatitis C virus infection. N Engl J Med 345, 41–52.[CrossRef]
    [Google Scholar]
  22. Lemberg, M. K. & Martoglio, B. ( 2002; ). Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol Cell 10, 735–744.[CrossRef]
    [Google Scholar]
  23. Li, D., Takyar, S. T., Lott, W. B. & Gowans, E. J. ( 2003; ). Amino acids 1–20 of the hepatitis C virus (HCV) core protein specifically inhibit HCV IRES-dependent translation in HepG2 cells, and inhibit both HCV IRES- and cap-dependent translation in HuH7 and CV-1 cells. J Gen Virol 84, 815–825.[CrossRef]
    [Google Scholar]
  24. Lin, C., Lindenbach, B. D., Pragal, B. M., McCourt, D. W. & Rice, C. M. ( 1994; ). Processing in the hepatitis C virus E2–NS2 region: identification of p7 and two distinct E2-specific products with different C termini. J Virol 68, 5063–5073.
    [Google Scholar]
  25. Liu, Q., Tackney, C., Bhat, R., Prince, A. & Zhang, P. ( 1997; ). Regulated processing of hepatitis C virus core protein is linked to subcellular localization. J Virol 71, 657–662.
    [Google Scholar]
  26. Lo, S. Y., Selby, M. J. & Ou, J. H. ( 1996; ). Interaction between hepatitis C virus core protein and E1 envelope protein. J Virol 70, 5177–5182.
    [Google Scholar]
  27. Lorenzo, L. J., Duenas-Carrera, S., Falcon, V., Acosta-Rivero, N., Gonzalez, E., de la Rosa, M. C., Menendez, I. & Morales, J. ( 2001; ). Assembly of truncated HCV core antigen into virus-like particles in Escherichia coli. Biochem Biophys Res Commun 281, 962–965.[CrossRef]
    [Google Scholar]
  28. Lyons, A. J. & Robertson, H. D. ( 2003; ). Detection of tRNA-like structure through RNase P cleavage of viral internal ribosome entry site RNAs near the AUG start triplet. J Biol Chem 278, 26844–26850.[CrossRef]
    [Google Scholar]
  29. Ma, H.-C., Ke, C.-H., Hsieh, T.-Y. & Lo, S.-Y. ( 2002; ). The first hydrophobic domain of the hepatitis C virus E1 protein is important for interaction with the capsid protein. J Gen Virol 83, 3085–3092.
    [Google Scholar]
  30. Maillard, P., Krawczynski, K., Nitkiewicz, J. & 7 other authors ( 2001; ). Nonenveloped nucleocapsids of hepatitis C virus in the serum of infected patients. J Virol 75, 8240–8250.[CrossRef]
    [Google Scholar]
  31. Mandl, C. W., Heinz, F. X. & Kunz, C. ( 1988; ). Sequence of the structural proteins of tick-borne encephalitis virus (western subtype) and comparative analysis with other flaviviruses. Virology 166, 197–205.[CrossRef]
    [Google Scholar]
  32. Markoff, L., Falgout, B. & Chang, A. ( 1997; ). A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology 233, 105–117.[CrossRef]
    [Google Scholar]
  33. McLauchlan, J., Lemberg, M. K., Hope, G. & Martoglio, B. ( 2002; ). Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 21, 3980–3988.[CrossRef]
    [Google Scholar]
  34. Nolandt, O., Kern, V., Müller, H., Pfaff, E., Theilmann, L., Welker, R. & Kräusslich, H.-G. ( 1997; ). Analysis of hepatitis C virus core protein interaction domains. J Gen Virol 79, 1331–1340.
    [Google Scholar]
  35. Santolini, E., Migliaccio, G. & La Monica, N. ( 1994; ). Biosynthesis and biochemical properties of the hepatitis C virus core protein. J Virol 68, 3631–3641.
    [Google Scholar]
  36. Shimizu, Y., Feinstone, S., Kohara, M., Purcell, R. & Yoshikura, H. ( 1996; ). Hepatitis C virus: detection of intracellular virus particles by electron microscopy. Hepatology 23, 205–209.[CrossRef]
    [Google Scholar]
  37. Tang, C., Loeliger, E., Kinde, I., Kyere, S., Mayo, K., Barklis, E., Sun, Y., Huang, M. & Summers, M. F. ( 2003; ). Antiviral inhibition of the HIV-1 capsid protein. J Mol Biol 327, 1013–1020.[CrossRef]
    [Google Scholar]
  38. Thomssen, R. & Bonk, S. ( 2002; ). Virolytic action of lipoprotein lipase on hepatitis C virus in human sera. Med Microbiol Immunol 191, 17–24.[CrossRef]
    [Google Scholar]
  39. Toyoda, H., Kumada, T., Tokuda, A. & 13 other authors ( 2000; ). Long-term follow-up of sustained responders to interferon therapy, in patients with chronic hepatitis C. J Viral Hepat 6, 414–419.
    [Google Scholar]
  40. Xiang, J., Klinzman, D., McLinden, J., Schmidt, W. N., LaBrecque, D. R., Gish, R. & Stapleton, J. T. ( 1998; ). Characterization of hepatitis G virus (GB-C virus) particles: evidence for a nucleocapsid and expression of sequences upstream of the E1 protein. J Virol 72, 2738–2744.
    [Google Scholar]
  41. Yan, B.-S., Tam, M. H. & Syu, W.-J. ( 1998; ). Self-association of the C-terminal domain of the hepatitis-C virus core protein. Eur J Biochem 258, 100–106.[CrossRef]
    [Google Scholar]
  42. Yasui, K., Wakita, T., Tsukiyama-Kohara, K., Funahashi, S.-I., Ichikawa, M., Kajita, T., Moradpour, D., Wands, J. R. & Kohara, M. ( 1998; ). The native form and maturation process of hepatitis C virus core protein. J Virol 72, 6048–6055.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79775-0
Loading
/content/journal/jgv/10.1099/vir.0.79775-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error