1887

Abstract

Using a monoclonal antibody directed to domain I of the West Nile virus (WNV) envelope (E) protein, we identified a continuous (linear) epitope that was immunogenic during WNV infection of horses. Using synthetic peptides, this epitope was mapped to a 19 aa sequence (WN19: E147–165) encompassing the WNV NY99 E protein glycosylation site at position 154. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. -linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognized the recombinant peptide. Failure of most WNV- and MVEV-positive horse sera to recognize the epitope as a deglycosylated fusion protein confirmed that the -linked glycan was important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/003731-0
2008-12-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/12/3063.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/003731-0&mimeType=html&fmt=ahah

References

  1. Adams, S. C., Broom, A. K., Sammels, L. M., Hartnett, A. C., Howard, M. J., Coelen, R. J., Mackenzie, J. S. & Hall, R. A. ( 1995; ). Glycosylation and antigenic variation among Kunjin virus isolates. Virology 206, 49–56.[CrossRef]
    [Google Scholar]
  2. Balasuriya, U. B. R., Shi, P. Y., Wong, S. J., Demarest, V. L., Gardner, I. A., Hullinger, P. J., Ferraro, G. L., Boone, J. D., De Cino, C. L. & other authors ( 2006; ). Detection of antibodies to West Nile virus in equine sera using microsphere immunoassay. J Vet Diagn Invest 18, 392–395.[CrossRef]
    [Google Scholar]
  3. Beasley, D. W. C., Davis, C. T., Estrada-Franco, J., Navarro-Lopez, R., Campomanes-Cortes, A., Tesh, R. B., Weaver, S. C. & Barrett, A. D. T. ( 2004a; ). Genome sequence and attenuating mutations in West Nile virus isolate from Mexico. Emerg Infect Dis 10, 2221–2224.[CrossRef]
    [Google Scholar]
  4. Beasley, D. W. C., Holbrook, M. R., Travassos da Rosa, A. P. A., Coffey, L., Carrara, A. S., Phillippi-Falkenstein, K., Bohm, R. P., Jr, Ratterree, M. S., Lillibridge, K. M. & other authors ( 2004b; ). Use of a recombinant envelope protein subunit antigen for specific serological diagnosis of West Nile virus infection. J Clin Microbiol 42, 2759–2765.[CrossRef]
    [Google Scholar]
  5. Blitvich, B. J., Bowen, R. A., Marlenee, N. L., Hall, R. A., Bunning, M. L. & Beaty, B. J. ( 2003; ). Epitope-blocking enzyme-linked immunosorbent assays for detection of West Nile virus antibodies in domestic mammals. J Clin Microbiol 41, 2676–2679.[CrossRef]
    [Google Scholar]
  6. Bossart, K. N., McEachern, J. A., Hickey, A. C., Choudhry, V., Dimitrov, D. S., Eaton, B. T. & Wang, L. F. ( 2007; ). Neutralization assays for differential henipavirus serology using Bio-Plex protein array systems. J Virol Methods 142, 29–40.[CrossRef]
    [Google Scholar]
  7. Bossart, K. N., Tachedjian, M., McEachern, J. A., Crameri, G., Zhu, Z., Dimitrov, D. S., Broder, C. C. & Wang, L. F. ( 2008; ). Functional studies of host-specific ephrin-B ligands as Henipavirus receptors. Virology 372, 357–371.[CrossRef]
    [Google Scholar]
  8. Calisher, C. H., Karabatsos, N., Dalrymple, J. M., Shope, R. E., Porterfield, J. S., Westaway, E. G. & Brandt, W. E. ( 1989; ). Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol 70, 37–43.[CrossRef]
    [Google Scholar]
  9. Castillo-Olivares, J. & Wood, J. ( 2004; ). West Nile virus infection of horses. Vet Res 35, 467–483.[CrossRef]
    [Google Scholar]
  10. Chang, D. C., Liu, W. J., Anraku, I., Clark, D. C., Pollitt, C. C., Suhrbier, A., Hall, R. A. & Khromykh, A. A. ( 2008; ). Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus. Nat Biotechnol 26, 571–577.[CrossRef]
    [Google Scholar]
  11. Clark, D. C., Lobigs, M., Lee, E., Howard, M. J., Clark, K., Blitvich, B. J. & Hall, R. A. ( 2007; ). In situ reactions of monoclonal antibodies with a viable mutant of Murray Valley encephalitis virus reveal an absence of dimeric NS1 protein. J Gen Virol 88, 1175–1183.[CrossRef]
    [Google Scholar]
  12. Coia, G., Hudson, P. J. & Lilley, G. G. ( 1996; ). Construction of recombinant extended single-chain antibody peptide conjugates for use in the diagnosis of HIV-1 and HIV-2. J Immunol Methods 192, 13–23.[CrossRef]
    [Google Scholar]
  13. Daffis, S., Kontermann, R. E., Korimbocus, J., Zeller, H., Klenk, H. D. & ter Meulen, J. ( 2005; ). Antibody responses against wild-type yellow fever virus and the 17D vaccine strain: characterization with human monoclonal antibody fragments and neutralization escape variants. Virology 337, 262–272.[CrossRef]
    [Google Scholar]
  14. Dauphin, G. & Zientara, S. ( 2007; ). West Nile virus: recent trends in diagnosis and vaccine development. Vaccine 25, 5563–5576.[CrossRef]
    [Google Scholar]
  15. Davis, B. S., Chang, G. J., Cropp, B., Roehrig, J. T., Martin, D. A., Mitchell, C. J., Bowen, R. & Bunning, M. L. ( 2001; ). West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 75, 4040–4047.[CrossRef]
    [Google Scholar]
  16. Gard, G. P., Marshall, I. D., Walker, K. H., Acland, H. M. & De Sarem, W. G. ( 1977; ). Association of Australian arboviruses with nervous disease in horses. Aust Vet J 53, 61–66.[CrossRef]
    [Google Scholar]
  17. Gubler, D. J. ( 2007; ). The continuing spread of West Nile virus in the western hemisphere. Clin Infect Dis 45, 1039–1046.[CrossRef]
    [Google Scholar]
  18. Guirakhoo, F., Heinz, F. X. & Kunz, C. ( 1989; ). Epitope model of tick-borne encephalitis virus envelope glycoprotein E: analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH. Virology 169, 90–99.[CrossRef]
    [Google Scholar]
  19. Hall, R. A., Burgess, G. W., Kay, B. H. & Clancy, P. ( 1991; ). Monoclonal antibodies to Kunjin and Kokobera viruses. Immunol Cell Biol 69, 47–49.[CrossRef]
    [Google Scholar]
  20. Hall, R. A., Broom, A. K., Hartnett, A. C., Howard, M. J. & Mackenzie, J. S. ( 1995; ). Immunodominant epitopes on the NS1 protein of MVE and KUN viruses serve as targets for a blocking ELISA to detect virus-specific antibodies in sentinel animal serum. J Virol Methods 51, 201–210.[CrossRef]
    [Google Scholar]
  21. Hall, R. A., Broom, A. K., Smith, D. W. & Mackenzie, J. S. ( 2002; ). The ecology and epidemiology of Kunjin virus. Curr Top Microbiol Immunol 267, 253–269.
    [Google Scholar]
  22. Herrmann, S., Leshem, B., Lobel, L., Bin, H., Mendelson, E., Ben-Nathan, D., Dussart, P., Porgador, A., Rager-Zisman, B. & Marks, R. S. ( 2007; ). T7 phage display of Ep15 peptide for the detection of WNV IgG. J Virol Methods 141, 133–140.[CrossRef]
    [Google Scholar]
  23. Ionescu, R. E., Cosnier, S., Herrmann, S. & Marks, R. S. ( 2007; ). Amperometric immunosensor for the detection of anti-West Nile virus IgG. Anal Chem 79, 8662–8668.[CrossRef]
    [Google Scholar]
  24. Johnson, A. J., Noga, A. J., Kosoy, O., Lanciotti, R. S., Johnson, A. A. & Biggerstaff, B. J. ( 2005; ). Duplex microsphere-based immunoassay for detection of anti-West Nile virus and anti-St. Louis encephalitis virus immunoglobulin M antibodies. Clin Diagn Lab Immunol 12, 566–574.
    [Google Scholar]
  25. Kay, B. H., Pollitt, C. C., Fanning, I. D. & Hall, R. A. ( 1987; ). The experimental infection of horses with Murray Valley encephalitis and Ross River viruses. Aust Vet J 64, 52–55.[CrossRef]
    [Google Scholar]
  26. Kuno, G. ( 2003; ). Serodiagnosis of flaviviral infections and vaccinations in humans. Adv Virus Res 61, 3–65.
    [Google Scholar]
  27. Lanciotti, R. S., Roehrig, J. T., Deubel, V., Smith, J., Parker, M., Steele, K., Crise, B., Volpe, K. E., Crabtree, M. B. & other authors ( 1999; ). Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286, 2333–2337.[CrossRef]
    [Google Scholar]
  28. Lobigs, M., Marshall, I. D., Weir, R. C. & Dalgarno, L. ( 1988; ). Murray Valley encephalitis virus field strains from Australia and Papua New Guinea: studies on the sequence of the major envelope protein gene and virulence for mice. Virology 165, 245–255.[CrossRef]
    [Google Scholar]
  29. May, F. J., Lobigs, M., Lee, E., Gendle, D. J., Mackenzie, J. S., Broom, A. K., Conlan, J. V. & Hall, R. A. ( 2006; ). Biological, antigenic and phylogenetic characterization of the flavivirus Alfuy. J Gen Virol 87, 329–337.[CrossRef]
    [Google Scholar]
  30. McBride, J. W., Doyle, C. K., Zhang, X., Cardenas, A. M., Popov, V. L., Nethery, K. A. & Woods, M. E. ( 2007; ). Identification of a glycosylated Ehrlichia canis 19-kilodalton major immunoreactive protein with a species-specific serine-rich glycopeptide epitope. Infect Immun 75, 74–82.[CrossRef]
    [Google Scholar]
  31. Prince, H. E. & Hogrefe, W. R. ( 2005; ). Assays for detecting West Nile virus antibodies in human serum, plasma, and cerebrospinal fluid. Clin Appl Immunol Rev 5, 45–63.[CrossRef]
    [Google Scholar]
  32. Roberson, J. A., Crill, W. D. & Chang, G. J. ( 2007; ). Differentiation of West Nile and St. Louis encephalitis virus infections by use of noninfectious virus-like particles with reduced cross-reactivity. J Clin Microbiol 45, 3167–3174.[CrossRef]
    [Google Scholar]
  33. Roehrig, J. T. ( 2003; ). Antigenic structure of flavivirus proteins. Adv Virus Res 59, 141–175.
    [Google Scholar]
  34. Ryman, K. D., Ledger, T. N., Weir, R. C., Schlesinger, J. J. & Barrett, A. D. T. ( 1997; ). Yellow fever virus envelope protein has two discrete type-specific neutralizing epitopes. J Gen Virol 78, 1353–1356.
    [Google Scholar]
  35. Sanchez, M. D., Pierson, T. C., McAllister, D., Hanna, S. L., Puffer, B. A., Valentine, L. E., Murtadha, M. M., Hoxie, J. A. & Doms, R. W. ( 2005; ). Characterization of neutralizing antibodies to West Nile virus. Virology 336, 70–82.[CrossRef]
    [Google Scholar]
  36. Sanchez, M. D., Pierson, T. C., DeGrace, M. M., Mattei, L. M., Hanna, S. L., Del Piero, F. & Doms, R. W. ( 2007; ). The neutralizing antibody response against West Nile virus in naturally infected horses. Virology 359, 336–348.[CrossRef]
    [Google Scholar]
  37. Sanders, R. W., Venturi, M., Schiffner, L., Kalyanaraman, R., Katinger, H., Lloyd, K. O., Kwong, P. D. & Moore, J. P. ( 2002; ). The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J Virol 76, 7293–7305.[CrossRef]
    [Google Scholar]
  38. Scherret, J. H., Mackenzie, J. S., Khromykh, A. A. & Hall, R. A. ( 2001; ). Biological significance of glycosylation of the envelope protein of Kunjin virus. Ann N Y Acad Sci 951, 361–363.
    [Google Scholar]
  39. Sejvar, J. J. & Marfin, A. A. ( 2006; ). Manifestations of West Nile neuroinvasive disease. Rev Med Virol 16, 209–224.[CrossRef]
    [Google Scholar]
  40. Shi, P. Y. & Wong, S. J. ( 2003; ). Serologic diagnosis of West Nile virus infection. Expert Rev Mol Diagn 3, 733–741.[CrossRef]
    [Google Scholar]
  41. Stiasny, K., Kiermayr, S., Holzmann, H. & Heinz, F. X. ( 2006; ). Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. J Virol 80, 9557–9568.[CrossRef]
    [Google Scholar]
  42. van der Meulen, K. M., Pensaert, M. B. & Nauwynck, H. J. ( 2005; ). West Nile virus in the vertebrate world. Arch Virol 150, 637–657.[CrossRef]
    [Google Scholar]
  43. Wong, S. J., Boyle, R. H., Demarest, V. L., Woodmansee, A. N., Kramer, L. D., Li, H., Drebot, M., Koski, R. A., Fikrig, E. & other authors ( 2003; ). Immunoassay targeting nonstructural protein 5 to differentiate West Nile virus infection from dengue and St. Louis encephalitis virus infections and from flavivirus vaccination. J Clin Microbiol 41, 4217–4223.[CrossRef]
    [Google Scholar]
  44. Wong, S. J., Demarest, V. L., Boyle, R. H., Wang, T., Ledizet, M., Kar, K., Kramer, L. D., Fikrig, E. & Koski, R. A. ( 2004; ). Detection of human anti-flavivirus antibodies with a West Nile virus recombinant antigen microsphere immunoassay. J Clin Microbiol 42, 65–72.[CrossRef]
    [Google Scholar]
  45. Wright, P. J. ( 1982; ). Envelope protein of the flavivirus Kunjin is apparently not glycosylated. J Gen Virol 59, 29–38.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/003731-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/003731-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error