1887

Abstract

Dendritic cells (DCs) are essential for the induction of specific immune responses against invading pathogens. Herpes simplex virus (HSV) is a common human pathogen that causes painful but mild infections of the skin and mucosa, and which results in latency and recurrent infections. Of the two HSV subtypes described, HSV-1 causes mainly oral–facial lesions, whilst HSV-2 is associated with genital herpes. DCs are involved in HSV-induced immune suppression, but little is known about the molecular interactions between DCs and HSV. This study demonstrated that HSV-1 and -2 both interact with the DC-specific C-type lectin DC-SIGN. Further analyses demonstrated that DC-SIGN interacts with the HSV glycoproteins gB and gC. Binding of HSV-1 to immature DCs depended on both DC-SIGN and heparan sulfate proteoglycans. Strikingly, HSV-1 infection of DCs was almost completely inhibited by blocking antibodies against DC-SIGN. Thus, DC-SIGN is an important attachment receptor for HSV-1 on immature DCs and enhances infection of DCs . In addition, DC-SIGN captures HSV-1 for transmission to permissive target cells. These data strongly suggest that DC-SIGN is a potential target to prevent HSV infection and virus dissemination. Further studies will show whether these interactions are involved in HSV-induced immune suppression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/003129-0
2008-10-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/10/2398.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/003129-0&mimeType=html&fmt=ahah

References

  1. Altmann, F., Staudacher, E., Wilson, I. B. & Marz, L. ( 1999; ). Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J 16, 109–123.[CrossRef]
    [Google Scholar]
  2. Barreca, C. & O'Hare, P. ( 2004; ). Suppression of herpes simplex virus 1 in MDBK cells via the interferon pathway. J Virol 78, 8641–8653.[CrossRef]
    [Google Scholar]
  3. Bergstrom, T., Sjogren-Jansson, E., Jeansson, S. & Lycke, E. ( 1992; ). Mapping neuroinvasiveness of the herpes simplex virus type 1 encephalitis-inducing strain 2762 by the use of monoclonal antibodies. Mol Cell Probes 6, 41–49.[CrossRef]
    [Google Scholar]
  4. Burleigh, L., Lozach, P. Y., Schiffer, C., Staropoli, I., Pezo, V., Porrot, F., Canque, B., Virelizier, J. L., Arenzana-Seisdedos, F. & Amara, A. ( 2006; ). Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells. J Virol 80, 2949–2957.[CrossRef]
    [Google Scholar]
  5. Cai, W. Z., Person, S., Warner, S. C., Zhou, J. H. & DeLuca, N. A. ( 1987; ). Linker-insertion nonsense and restriction-site deletion mutations of the gB glycoprotein gene of herpes simplex virus type 1. J Virol 61, 714–721.
    [Google Scholar]
  6. Cai, W. H., Gu, B. & Person, S. ( 1988; ). Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol 62, 2596–2604.
    [Google Scholar]
  7. Cheshenko, N. & Herold, B. C. ( 2002; ). Glycoprotein B plays a predominant role in mediating herpes simplex virus type 2 attachment and is required for entry and cell-to-cell spread. J Gen Virol 83, 2247–2255.
    [Google Scholar]
  8. Coffin, R. S., Thomas, S. K., Thomas, N. S., Lilley, C. E., Pizzey, A. R., Griffiths, C. H., Gibb, B. J., Wagstaff, M. J., Inges, S. J. & other authors ( 1998; ). Pure populations of transduced primary human cells can be produced using GFP expressing herpes virus vectors and flow cytometry. Gene Ther 5, 718–722.[CrossRef]
    [Google Scholar]
  9. de Witte, L., Abt, M., Schneider-Schaulies, S., van Kooyk, Y. & Geijtenbeek, T. B. ( 2006; ). Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 80, 3477–3486.[CrossRef]
    [Google Scholar]
  10. de Witte, L., Bobardt, M., Chatterji, U., Degeest, G., David, G., Geijtenbeek, T. B. & Gallay, P. ( 2007; ). Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1. Proc Natl Acad Sci U S A 104, 19464–19469.[CrossRef]
    [Google Scholar]
  11. Dolan, A., Jamieson, F. E., Cunningham, C., Barnett, B. C. & McGeoch, D. J. ( 1998; ). The genome sequence of herpes simplex virus type 2. J Virol 72, 2010–2021.
    [Google Scholar]
  12. Garcia-Vallejo, J. J., van het Hof, B., Robben, J., van Wijk, J. A., van Die, I., Joziasse, D. H. & van Dijk, W. ( 2004; ). Approach for defining endogenous reference genes in gene expression experiments. Anal Biochem 329, 293–299.[CrossRef]
    [Google Scholar]
  13. Geijtenbeek, T. B. & van Kooyk, Y. ( 2003; ). DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. Curr Top Microbiol Immunol 276, 31–54.
    [Google Scholar]
  14. Geijtenbeek, T. B., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C., Adema, G. J., van Kooyk, Y. & Figdor, C. G. ( 2000; ). Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585.[CrossRef]
    [Google Scholar]
  15. Geijtenbeek, T. B., van Duijnhoven, G. C., van Vliet, S. J., Krieger, E., Vriend, G., Figdor, C. G. & van Kooyk, Y. ( 2002; ). Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1. J Biol Chem 277, 11314–11320.[CrossRef]
    [Google Scholar]
  16. Gringhuis, S. I., den Dunnen, J., Litjens, M., van't Hof, B., van Kooyk, Y. & Geijtenbeek, T. B. H. ( 2007; ). C-type lectin DC-SIGN modulates toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 26, 605–616.[CrossRef]
    [Google Scholar]
  17. Halary, F., Amara, A., Lortat-Jacob, H., Messerle, M., Delaunay, T., Houlès, C., Fieschi, F., Arenzana-Seisdedos, F., Moreau, J. F. & Déchanet-Merville, J. ( 2002; ). Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17, 653–664.[CrossRef]
    [Google Scholar]
  18. Herold, B. C., WuDunn, D., Soltys, N. & Spear, P. G. ( 1991; ). Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol 65, 1090–1098.
    [Google Scholar]
  19. Hovius, J. W. R., de Jong, M. A. W. P., den Dunnen, J., Litjens, M., van der Poll, T., Gringhuis, S. I. & Geijtenbeek, T. B. H. ( 2008; ). Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PloS Pathog 4, e31 [CrossRef]
    [Google Scholar]
  20. Kruse, M., Rosorius, O., Kratzer, F., Bevec, D., Kuhnt, C., Steinkasserer, A., Schuler, G. & Hauber, J. ( 2000a; ). Inhibition of CD83 cell surface expression during dendritic cell maturation by interference with nuclear export of CD83 mRNA. J Exp Med 191, 1581–1590.[CrossRef]
    [Google Scholar]
  21. Kruse, M., Rosorius, O., Kratzer, F., Stelz, G., Kuhnt, C., Schuler, G., Hauber, J. & Steinkasserer, A. ( 2000b; ). Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virol 74, 7127–7136.[CrossRef]
    [Google Scholar]
  22. Kummer, M., Turza, N. M., Muhl-Zurbes, P., Lechmann, M., Boutell, C., Coffin, R. S., Everett, R. D., Steinkasserer, A. & Prechtel, A. T. ( 2007; ). Herpes simplex virus type 1 induces CD83 degradation in mature dendritic cells with immediate-early kinetics via the cellular proteasome. J Virol 81, 6326–6338.[CrossRef]
    [Google Scholar]
  23. Lekkerkerker, A. N., Ludwig, I. S., van Vliet, S. J., van Kooyk, Y. & Geijtenbeek, T. B. ( 2004; ). Potency of HIV-1 envelope glycoprotein gp120 antibodies to inhibit the interaction of DC-SIGN with HIV-1 gp120. Virology 329, 465–476.[CrossRef]
    [Google Scholar]
  24. Little, S. P., Jofre, J. T., Courtney, R. J. & Schaffer, P. A. ( 1981; ). A virion-associated glycoprotein essential for infectivity of herpes simplex virus type 1. Virology 115, 149–160.[CrossRef]
    [Google Scholar]
  25. Mikloska, Z., Bosnjak, L. & Cunningham, A. L. ( 2001; ). Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J Virol 75, 5958–5964.[CrossRef]
    [Google Scholar]
  26. Morrison, L. A. ( 2004; ). The Toll of herpes simplex virus infection. Trends Microbiol 12, 353–356.[CrossRef]
    [Google Scholar]
  27. Novak, N. & Peng, W. M. ( 2005; ). Dancing with the enemy: the interplay of herpes simplex virus with dendritic cells. Clin Exp Immunol 142, 405–410.
    [Google Scholar]
  28. Nystrom, K., Biller, M., Grahn, A., Lindh, M., Larson, G. & Olofsson, S. ( 2004; ). Real time PCR for monitoring regulation of host gene expression in herpes simplex virus type 1-infected human diploid cells. J Virol Methods 118, 83–94.[CrossRef]
    [Google Scholar]
  29. Olofsson, S., Khanna, B. & Lycke, E. ( 1980; ). Altered kinetic properties of sialyl and galactosyl transferases associated with herpes simplex virus infection of GMK and BHK cells. J Gen Virol 47, 1–9.[CrossRef]
    [Google Scholar]
  30. Pepose, J. S., Keadle, T. L. & Morrison, L. A. ( 2006; ). Ocular herpes simplex: changing epidemiology, emerging disease patterns, and the potential of vaccine prevention and therapy. Am J Ophthalmol 141, 547–557.[CrossRef]
    [Google Scholar]
  31. Pollara, G., Speidel, K., Samady, L., Rajpopat, M., McGrath, Y., Ledermann, J., Coffin, R. S., Katz, D. R. & Chain, B. ( 2003; ). Herpes simplex virus infection of dendritic cells: balance among activation, inhibition, and immunity. J Infect Dis 187, 165–178.[CrossRef]
    [Google Scholar]
  32. Raftery, M. J., Winau, F., Kaufmann, S. H., Schaible, U. E. & Schonrich, G. ( 2006; ). CD1 antigen presentation by human dendritic cells as a target for herpes simplex virus immune evasion. J Immunol 177, 6207–6214.[CrossRef]
    [Google Scholar]
  33. Roizman, D., Knipe, D. & Whitley, R. ( 2007; ). Herpes simplex viruses. In Fields Virology, 5th edn, pp. 2501–2601. Edited by D. M. Knipe, D. Howley, D. E. Griffin, R. Lamb & B. Martin. Philadelphia, PA: Lippincott Williams and Wilkins.
  34. Salio, M., Cella, M., Suter, M. & Lanzavecchia, A. ( 1999; ). Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29, 3245–3253.[CrossRef]
    [Google Scholar]
  35. Sallusto, F. & Lanzavecchia, A. ( 1994; ). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179, 1109–1118.[CrossRef]
    [Google Scholar]
  36. Sarmiento, M., Haffey, M. & Spear, P. G. ( 1979; ). Membrane proteins specified by herpes simplex viruses. III. Role of glycoprotein VP7(B2) in virion infectivity. J Virol 29, 1149–1158.
    [Google Scholar]
  37. Satoh, T., Arii, J., Suenaga, T., Wang, J., Kogure, A., Uehori, J., Arase, N., Shiratori, I., Tanaka, S. & other authors ( 2008; ). PILRα is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B. Cell 132, 935–944.[CrossRef]
    [Google Scholar]
  38. Spear, P. G. ( 2004; ). Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 6, 401–410.[CrossRef]
    [Google Scholar]
  39. Taylor, T. J., Brockman, M. A., McNamee, E. E. & Knipe, D. M. ( 2002; ). Herpes simplex virus. Front Biosci 7, d752–d764.[CrossRef]
    [Google Scholar]
  40. Theodoridis, A. A., Prechtel, A. T., Turza, N. M., Zenke, M. & Steinkasserer, A. ( 2007; ). Infection of human dendritic cells with herpes simplex virus type 1 dramatically diminishes the mRNA levels of the prostaglandin E2 receptors EP2 and EP4. Immunobiology 212, 827–838.
    [Google Scholar]
  41. Trybala, E., Liljeqvist, J. A., Svennerholm, B. & Bergstrom, T. ( 2000; ). Herpes simplex virus types 1 and 2 differ in their interaction with heparan sulfate. J Virol 74, 9106–9114.[CrossRef]
    [Google Scholar]
  42. van Gisbergen, K. P., Aarnoudse, C. A., Meijer, G. A., Geijtenbeek, T. B. & van Kooyk, Y. ( 2005a; ). Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin. Cancer Res 65, 5935–5944.[CrossRef]
    [Google Scholar]
  43. van Gisbergen, K. P., Ludwig, I. S., Geijtenbeek, T. B. & van Kooyk, Y. ( 2005b; ). Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils. FEBS Lett 579, 6159–6168.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/003129-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/003129-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error