1887

Abstract

Transcription of the human immunodeficiency virus type 1 (HIV) requires the interaction of the cyclin T1 (CycT1) subunit of a host cellular factor, the positive transcription elongation factor b (P-TEFb), with the viral Tat protein, at the transactivation response element (TAR) of nascent transcripts. Because of this virus-specific interaction, CycT1 may potentially serve as a target for the development of anti-HIV therapies. Here we report the development of a mutant CycT1 protein, containing three threonine-to-alanine substitutions in the linker region between two of the cyclin boxes, which displays a potent dominant negative effect on HIV transcription. Investigation into the inhibitory mechanism revealed that this mutant CycT1 interacted with Tat and the cyclin-dependent kinase 9 (Cdk9) subunit of P-TEFb, but failed to stimulate the Cdk9 kinase activity critical for elongation. This mutant CycT1 protein may represent a novel class of specific inhibitors of HIV transcription which could lead to development of new antiviral therapies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/002857-0
2008-11-01
2020-10-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/11/2783.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/002857-0&mimeType=html&fmt=ahah

References

  1. Anand K., Schulte A., Fujinaga K., Scheffzek K., Geyer M. 2007; Cyclin box structure of the P-TEFb subunit cyclin T1 derived from a fusion complex with EIAV tat. J Mol Biol 370:826–836 [CrossRef]
    [Google Scholar]
  2. Bai J., Sui J., Zhu R. Y., Tallarico A. S., Gennari F., Zhang D., Marasco W. A. 2003; Inhibition of Tat-mediated transactivation and HIV-1 replication by human anti-hCyclinT1 intrabodies. J Biol Chem 278:1433–1442 [CrossRef]
    [Google Scholar]
  3. Barboric M., Yik J. H., Czudnochowski N., Yang Z., Chen R., Contreras X., Geyer M., Matija Peterlin B., Zhou Q. 2007; Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res 35:2003–2012 [CrossRef]
    [Google Scholar]
  4. Bieniasz P. D., Grdina T. A., Bogerd H. P., Cullen B. R. 1998; Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J 17:7056–7065 [CrossRef]
    [Google Scholar]
  5. Bieniasz P. D., Grdina T. A., Bogerd H. P., Cullen B. R. 1999; Recruitment of cyclin T1/P-TEFb to an HIV type 1 long terminal repeat promoter proximal RNA target is both necessary and sufficient for full activation of transcription. Proc Natl Acad Sci U S A 96:7791–7796 [CrossRef]
    [Google Scholar]
  6. Chao S. H., Price D. H. 2001; Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 276:31793–31799 [CrossRef]
    [Google Scholar]
  7. Chao S. H., Fujinaga K., Marion J. E., Taube R., Sausville E. A., Senderowicz A. M., Peterlin B. M., Price D. H. 2000; Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 275:28345–28348 [CrossRef]
    [Google Scholar]
  8. Dames S. A., Schonichen A., Schulte A., Barboric M., Peterlin B. M., Grzesiek S., Geyer M. 2007; Structure of the cyclin T binding domain of Hexim1 and molecular basis for its recognition of P-TEFb. Proc Natl Acad Sci U S A 104:14312–14317 [CrossRef]
    [Google Scholar]
  9. Diehl J. A., Sherr C. J. 1997; A dominant-negative cyclin D1 mutant prevents nuclear import of cyclin-dependent kinase 4 (CDK4) and its phosphorylation by CDK-activating kinase. Mol Cell Biol 17:7362–7374
    [Google Scholar]
  10. Fujinaga K., Taube R., Wimmer J., Cujec T. P., Peterlin B. M. 1999; Interactions between human cyclin T, Tat, and the transactivation response element (TAR) are disrupted by a cysteine to tyrosine substitution found in mouse cyclin T. Proc Natl Acad Sci U S A 96:1285–1290 [CrossRef]
    [Google Scholar]
  11. Fujinaga K., Irwin D., Geyer M., Peterlin B. M. 2002; Optimized chimeras between kinase-inactive mutant Cdk9 and truncated cyclin T1 proteins efficiently inhibit Tat transactivation and human immunodeficiency virus gene expression. J Virol 76:10873–10881 [CrossRef]
    [Google Scholar]
  12. Garber M. E., Wei P., Jones K. A. 1998a; HIV-1 Tat interacts with cyclin T1 to direct the P-TEFb CTD kinase complex to TAR RNA. Cold Spring Harb Symp Quant Biol 63:371–380 [CrossRef]
    [Google Scholar]
  13. Garber M. E., Wei P., KewalRamani V. N., Mayall T. P., Herrmann C. H., Rice A. P., Littman D. R., Jones K. A. 1998b; The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 12:3512–3527 [CrossRef]
    [Google Scholar]
  14. Heredia A., Davis C., Bamba D., Le N., Gwarzo M. Y., Sadowska M., Gallo R. C., Redfield R. R. 2005; Indirubin-3′-monoxime, a derivative of a Chinese antileukemia medicine, inhibits P-TEFb function and HIV-1 replication. AIDS 19:2087–2095 [CrossRef]
    [Google Scholar]
  15. Herrmann C. H., Carroll R. G., Wei P., Jones K. A., Rice A. P. 1998; Tat-associated kinase, TAK, activity is regulated by distinct mechanisms in peripheral blood lymphocytes and promonocytic cell lines. J Virol 72:9881–9888
    [Google Scholar]
  16. Hwang S., Tamilarasu N., Kibler K., Cao H., Ali A., Ping Y. H., Jeang K. T., Rana T. M. 2003; Discovery of a small molecule Tat- trans -activation-responsive RNA antagonist that potently inhibits human immunodeficiency virus-1 replication. J Biol Chem 278:39092–39103 [CrossRef]
    [Google Scholar]
  17. Ivanov D., Kwak Y. T., Nee E., Guo J., Garcia-Martinez L. F., Gaynor R. B. 1999; Cyclin T1 domains involved in complex formation with Tat and TAR RNA are critical for tat -activation. J Mol Biol 288:41–56 [CrossRef]
    [Google Scholar]
  18. Karn J. 1999; Tackling Tat. J Mol Biol 293:235–254 [CrossRef]
    [Google Scholar]
  19. Kim Y. K., Bourgeois C. F., Isel C., Churcher M. J., Karn J. 2002; Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation. Mol Cell Biol 22:4622–4637 [CrossRef]
    [Google Scholar]
  20. Kim Y. K., Bourgeois C. F., Pearson R., Tyagi M., West M. J., Wong J., Wu S. Y., Chiang C. M., Karn J. 2006; Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J 25:3596–3604 [CrossRef]
    [Google Scholar]
  21. Lind K. E., Du Z., Fujinaga K., Peterlin B. M., James T. L. 2002; Structure-based computational database screening, in vitro assay, and NMR assessment of compounds that target TAR RNA. Chem Biol 9:185–193 [CrossRef]
    [Google Scholar]
  22. Mancebo H. S., Lee G., Flygare J., Tomassini J., Luu P., Zhu Y., Peng J., Blau C., Hazuda D. other authors 1997; P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro . Genes Dev 11:2633–2644 [CrossRef]
    [Google Scholar]
  23. Michels A. A., Nguyen V. T., Fraldi A., Labas V., Edwards M., Bonnet F., Lania L., Bensaude O. 2003; MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol Cell Biol 23:4859–4869 [CrossRef]
    [Google Scholar]
  24. Mischiati C., Jeang K. T., Feriotto G., Breda L., Borgatti M., Bianchi N., Gambari R. 2001; Aromatic polyamidines inhibiting the Tat-induced HIV-1 transcription recognize structured TAR-RNA. Antisense Nucleic Acid Drug Dev 11:209–217 [CrossRef]
    [Google Scholar]
  25. Napolitano G., Mazzocco A., Fraldi A., Majello B., Lania L. 2003; Functional inactivation of Cdk9 through oligomerization chain reaction. Oncogene 22:4882–4888 [CrossRef]
    [Google Scholar]
  26. Nguyen V. T., Kiss T., Michels A. A., Bensaude O. 2001; 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414:322–325 [CrossRef]
    [Google Scholar]
  27. Okamoto H., Cujec T. P., Okamoto M., Peterlin B. M., Baba M., Okamoto T. 2000; Inhibition of the RNA-dependent transactivation and replication of human immunodeficiency virus type 1 by a fluoroquinoline derivative K-37. Virology 272:402–408 [CrossRef]
    [Google Scholar]
  28. Peterlin B. M., Price D. H. 2006; Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23:297–305 [CrossRef]
    [Google Scholar]
  29. Richter S. N., Palu G. 2006; Inhibitors of HIV-1 Tat-mediated transactivation. Curr Med Chem 13:1305–1315 [CrossRef]
    [Google Scholar]
  30. Schulte A., Czudnochowski N., Barboric M., Schonichen A., Blazek D., Peterlin B. M., Geyer M. 2005; Identification of a cyclin T-binding domain in Hexim1 and biochemical analysis of its binding competition with HIV-1 Tat. J Biol Chem 280:24968–24977 [CrossRef]
    [Google Scholar]
  31. Taube R., Fujinaga K., Wimmer J., Barboric M., Peterlin B. M. 1999; Tat transactivation: a model for the regulation of eukaryotic transcriptional elongation. Virology 264:245–253 [CrossRef]
    [Google Scholar]
  32. Yang Z., Zhu Q., Luo K., Zhou Q. 2001; The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414:317–322 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/002857-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/002857-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error