1887

Abstract

Transcription of the human immunodeficiency virus type 1 (HIV) requires the interaction of the cyclin T1 (CycT1) subunit of a host cellular factor, the positive transcription elongation factor b (P-TEFb), with the viral Tat protein, at the transactivation response element (TAR) of nascent transcripts. Because of this virus-specific interaction, CycT1 may potentially serve as a target for the development of anti-HIV therapies. Here we report the development of a mutant CycT1 protein, containing three threonine-to-alanine substitutions in the linker region between two of the cyclin boxes, which displays a potent dominant negative effect on HIV transcription. Investigation into the inhibitory mechanism revealed that this mutant CycT1 interacted with Tat and the cyclin-dependent kinase 9 (Cdk9) subunit of P-TEFb, but failed to stimulate the Cdk9 kinase activity critical for elongation. This mutant CycT1 protein may represent a novel class of specific inhibitors of HIV transcription which could lead to development of new antiviral therapies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/002857-0
2008-11-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/11/2783.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/002857-0&mimeType=html&fmt=ahah

References

  1. Anand, K., Schulte, A., Fujinaga, K., Scheffzek, K. & Geyer, M. ( 2007; ). Cyclin box structure of the P-TEFb subunit cyclin T1 derived from a fusion complex with EIAV tat. J Mol Biol 370, 826–836.[CrossRef]
    [Google Scholar]
  2. Bai, J., Sui, J., Zhu, R. Y., Tallarico, A. S., Gennari, F., Zhang, D. & Marasco, W. A. ( 2003; ). Inhibition of Tat-mediated transactivation and HIV-1 replication by human anti-hCyclinT1 intrabodies. J Biol Chem 278, 1433–1442.[CrossRef]
    [Google Scholar]
  3. Barboric, M., Yik, J. H., Czudnochowski, N., Yang, Z., Chen, R., Contreras, X., Geyer, M., Matija Peterlin, B. & Zhou, Q. ( 2007; ). Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res 35, 2003–2012.[CrossRef]
    [Google Scholar]
  4. Bieniasz, P. D., Grdina, T. A., Bogerd, H. P. & Cullen, B. R. ( 1998; ). Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J 17, 7056–7065.[CrossRef]
    [Google Scholar]
  5. Bieniasz, P. D., Grdina, T. A., Bogerd, H. P. & Cullen, B. R. ( 1999; ). Recruitment of cyclin T1/P-TEFb to an HIV type 1 long terminal repeat promoter proximal RNA target is both necessary and sufficient for full activation of transcription. Proc Natl Acad Sci U S A 96, 7791–7796.[CrossRef]
    [Google Scholar]
  6. Chao, S. H. & Price, D. H. ( 2001; ). Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 276, 31793–31799.[CrossRef]
    [Google Scholar]
  7. Chao, S. H., Fujinaga, K., Marion, J. E., Taube, R., Sausville, E. A., Senderowicz, A. M., Peterlin, B. M. & Price, D. H. ( 2000; ). Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 275, 28345–28348.[CrossRef]
    [Google Scholar]
  8. Dames, S. A., Schonichen, A., Schulte, A., Barboric, M., Peterlin, B. M., Grzesiek, S. & Geyer, M. ( 2007; ). Structure of the cyclin T binding domain of Hexim1 and molecular basis for its recognition of P-TEFb. Proc Natl Acad Sci U S A 104, 14312–14317.[CrossRef]
    [Google Scholar]
  9. Diehl, J. A. & Sherr, C. J. ( 1997; ). A dominant-negative cyclin D1 mutant prevents nuclear import of cyclin-dependent kinase 4 (CDK4) and its phosphorylation by CDK-activating kinase. Mol Cell Biol 17, 7362–7374.
    [Google Scholar]
  10. Fujinaga, K., Taube, R., Wimmer, J., Cujec, T. P. & Peterlin, B. M. ( 1999; ). Interactions between human cyclin T, Tat, and the transactivation response element (TAR) are disrupted by a cysteine to tyrosine substitution found in mouse cyclin T. Proc Natl Acad Sci U S A 96, 1285–1290.[CrossRef]
    [Google Scholar]
  11. Fujinaga, K., Irwin, D., Geyer, M. & Peterlin, B. M. ( 2002; ). Optimized chimeras between kinase-inactive mutant Cdk9 and truncated cyclin T1 proteins efficiently inhibit Tat transactivation and human immunodeficiency virus gene expression. J Virol 76, 10873–10881.[CrossRef]
    [Google Scholar]
  12. Garber, M. E., Wei, P. & Jones, K. A. ( 1998a; ). HIV-1 Tat interacts with cyclin T1 to direct the P-TEFb CTD kinase complex to TAR RNA. Cold Spring Harb Symp Quant Biol 63, 371–380.[CrossRef]
    [Google Scholar]
  13. Garber, M. E., Wei, P., KewalRamani, V. N., Mayall, T. P., Herrmann, C. H., Rice, A. P., Littman, D. R. & Jones, K. A. ( 1998b; ). The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 12, 3512–3527.[CrossRef]
    [Google Scholar]
  14. Heredia, A., Davis, C., Bamba, D., Le, N., Gwarzo, M. Y., Sadowska, M., Gallo, R. C. & Redfield, R. R. ( 2005; ). Indirubin-3′-monoxime, a derivative of a Chinese antileukemia medicine, inhibits P-TEFb function and HIV-1 replication. AIDS 19, 2087–2095.[CrossRef]
    [Google Scholar]
  15. Herrmann, C. H., Carroll, R. G., Wei, P., Jones, K. A. & Rice, A. P. ( 1998; ). Tat-associated kinase, TAK, activity is regulated by distinct mechanisms in peripheral blood lymphocytes and promonocytic cell lines. J Virol 72, 9881–9888.
    [Google Scholar]
  16. Hwang, S., Tamilarasu, N., Kibler, K., Cao, H., Ali, A., Ping, Y. H., Jeang, K. T. & Rana, T. M. ( 2003; ). Discovery of a small molecule Tat-trans-activation-responsive RNA antagonist that potently inhibits human immunodeficiency virus-1 replication. J Biol Chem 278, 39092–39103.[CrossRef]
    [Google Scholar]
  17. Ivanov, D., Kwak, Y. T., Nee, E., Guo, J., Garcia-Martinez, L. F. & Gaynor, R. B. ( 1999; ). Cyclin T1 domains involved in complex formation with Tat and TAR RNA are critical for tat-activation. J Mol Biol 288, 41–56.[CrossRef]
    [Google Scholar]
  18. Karn, J. ( 1999; ). Tackling Tat. J Mol Biol 293, 235–254.[CrossRef]
    [Google Scholar]
  19. Kim, Y. K., Bourgeois, C. F., Isel, C., Churcher, M. J. & Karn, J. ( 2002; ). Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation. Mol Cell Biol 22, 4622–4637.[CrossRef]
    [Google Scholar]
  20. Kim, Y. K., Bourgeois, C. F., Pearson, R., Tyagi, M., West, M. J., Wong, J., Wu, S. Y., Chiang, C. M. & Karn, J. ( 2006; ). Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J 25, 3596–3604.[CrossRef]
    [Google Scholar]
  21. Lind, K. E., Du, Z., Fujinaga, K., Peterlin, B. M. & James, T. L. ( 2002; ). Structure-based computational database screening, in vitro assay, and NMR assessment of compounds that target TAR RNA. Chem Biol 9, 185–193.[CrossRef]
    [Google Scholar]
  22. Mancebo, H. S., Lee, G., Flygare, J., Tomassini, J., Luu, P., Zhu, Y., Peng, J., Blau, C., Hazuda, D. & other authors ( 1997; ). P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 11, 2633–2644.[CrossRef]
    [Google Scholar]
  23. Michels, A. A., Nguyen, V. T., Fraldi, A., Labas, V., Edwards, M., Bonnet, F., Lania, L. & Bensaude, O. ( 2003; ). MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol Cell Biol 23, 4859–4869.[CrossRef]
    [Google Scholar]
  24. Mischiati, C., Jeang, K. T., Feriotto, G., Breda, L., Borgatti, M., Bianchi, N. & Gambari, R. ( 2001; ). Aromatic polyamidines inhibiting the Tat-induced HIV-1 transcription recognize structured TAR-RNA. Antisense Nucleic Acid Drug Dev 11, 209–217.[CrossRef]
    [Google Scholar]
  25. Napolitano, G., Mazzocco, A., Fraldi, A., Majello, B. & Lania, L. ( 2003; ). Functional inactivation of Cdk9 through oligomerization chain reaction. Oncogene 22, 4882–4888.[CrossRef]
    [Google Scholar]
  26. Nguyen, V. T., Kiss, T., Michels, A. A. & Bensaude, O. ( 2001; ). 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414, 322–325.[CrossRef]
    [Google Scholar]
  27. Okamoto, H., Cujec, T. P., Okamoto, M., Peterlin, B. M., Baba, M. & Okamoto, T. ( 2000; ). Inhibition of the RNA-dependent transactivation and replication of human immunodeficiency virus type 1 by a fluoroquinoline derivative K-37. Virology 272, 402–408.[CrossRef]
    [Google Scholar]
  28. Peterlin, B. M. & Price, D. H. ( 2006; ). Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23, 297–305.[CrossRef]
    [Google Scholar]
  29. Richter, S. N. & Palu, G. ( 2006; ). Inhibitors of HIV-1 Tat-mediated transactivation. Curr Med Chem 13, 1305–1315.[CrossRef]
    [Google Scholar]
  30. Schulte, A., Czudnochowski, N., Barboric, M., Schonichen, A., Blazek, D., Peterlin, B. M. & Geyer, M. ( 2005; ). Identification of a cyclin T-binding domain in Hexim1 and biochemical analysis of its binding competition with HIV-1 Tat. J Biol Chem 280, 24968–24977.[CrossRef]
    [Google Scholar]
  31. Taube, R., Fujinaga, K., Wimmer, J., Barboric, M. & Peterlin, B. M. ( 1999; ). Tat transactivation: a model for the regulation of eukaryotic transcriptional elongation. Virology 264, 245–253.[CrossRef]
    [Google Scholar]
  32. Yang, Z., Zhu, Q., Luo, K. & Zhou, Q. ( 2001; ). The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414, 317–322.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/002857-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/002857-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2783–2787

CycT1-280 (T143, 149, 155A) was unable to inhibit basal HIV transcription and CMV-driven transcription.

Tat can compete with HEXIM for binding to CycT1-280.

[Single PDF](58 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error