1887

Abstract

Arenaviruses such as Lassa virus cause a spectrum of disease in humans ranging from mild febrile illness to lethal haemorrhagic fever. The contributions of innate immunity to protection or pathogenicity are unknown. We compared patterns of expression of cytokines of innate immunity in mild versus severe arenavirus disease using an established guinea pig model based on the macrophage-tropic arenavirus Pichinde virus (PICV). Cytokine transcripts were measured by using real-time RT-PCR in target organs and blood during mild infection (caused by PICV, P2 variant) and lethal haemorrhagic fever (caused by PICV, P18 variant). In the initial peritoneal target cells, virulent P18 infection was associated with significantly increased gamma interferon (IFN-) and monocyte chemoattractant protein-1 (MCP-1, CCL2) mRNA levels relative to P2 infection. Peritoneal cells from P18-infected animals had decreased tumour necrosis factor alpha (TNF-), interleukin (IL)-8 (CXCL-8) and IL-12p40 transcripts relative to mock-infected animals. Late in infection, P18-infected peripheral blood leukocytes (PBL) had decreased TNF-, IFN-, and regulated upon activation, normal T cell expressed and secreted (RANTES, CCL-5) cytokine transcripts relative to P2-infected PBL. We conclude that, in severe arenavirus disease, patterns of cytokine expression in the initially infected cells favour recruitment of additional target monocytes, while inhibiting some of their pro-inflammatory responses. Suppression rather than overexpression of pro-inflammatory cytokines accompanied the terminal shock in this model of arenavirus haemorrhagic fever.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/002048-0
2008-10-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/10/2569.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/002048-0&mimeType=html&fmt=ahah

References

  1. Akaike, T. ( 2001; ). Role of free radicals in viral pathogenesis and mutation. Rev Med Virol 11, 87–101.[CrossRef]
    [Google Scholar]
  2. Aronson, J. F., Herzog, N. K. & Jerrells, T. R. ( 1994; ). Pathological and virological features of arenavirus disease in guinea pigs: comparison of two Pichinde virus strains. Am J Pathol 145, 228–235.
    [Google Scholar]
  3. Aronson, J. F., Herzog, N. K. & Jerrells, T. R. ( 1995; ). Tumor necrosis factor and the pathogenesis of Pichinde virus infection in guinea pigs. Am J Trop Med Hyg 52, 262–269.
    [Google Scholar]
  4. Asper, M., Sternsdorf, T., Hass, M., Drosten, C., Rhode, A., Schmitz, H. & Gunther, S. ( 2004; ). Inhibition of different Lassa virus strains by alpha and gamma interferons and comparison with a less pathogenic arenavirus. J Virol 78, 3162–3169.[CrossRef]
    [Google Scholar]
  5. Baize, S., Kaplon, J., Faure, C., Pannetier, D., Georges-Courbot, M. C. & Deubel, V. ( 2004; ). Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells. J Immunol 172, 2861–2869.[CrossRef]
    [Google Scholar]
  6. Bauermeister, K., Burger, M., Almanasreh, N., Knopf, H. P., Schumann, R. R., Schollmeyer, P. & Dobos, G. J. ( 1998; ). Distinct regulation of IL-8 and MCP-1 by LPS and interferon-γ-treated human peritoneal macrophages. Nephrol Dial Transplant 13, 1412–1419.[CrossRef]
    [Google Scholar]
  7. Billiau, A. & Vandenbroeck, K. ( 2001; ). IFNγ. In Cytokine Reference: a Compendium of Cytokines and Other Mediators of Host Defense, pp. 641–688. Edited by J. J. Oppenheim, M. Feldmann, S. K. Durum, T. Hirano, J. Vilcek & N. A. Nicola. San Diego: Academic Press.
  8. Bosio, C. M., Aman, M. J., Grogan, C. C., Hogan, R., Ruthel, G., Negley, D., Mohamadzadeh, M., Bavari, S. & Schmaljohn, A. L. ( 2003; ). Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J Infect Dis 188, 1630–1638.[CrossRef]
    [Google Scholar]
  9. Bowick, G. C., Fennewald, S. M., Elsom, B. L., Aronson, J. F., Luxon, B. A., Gorenstein, D. G. & Herzog, N. K. ( 2006; ). Differential signaling networks induced by mild and lethal hemorrhagic fever virus infections. J Virol 80, 10248–10252.[CrossRef]
    [Google Scholar]
  10. Bowick, G. C., Fennewald, S. M., Scott, E. P., Zhang, L., Elsom, B. L., Aronson, J. F., Spratt, H. M., Luxon, B. A., Gorenstein, D. G. & Herzog, N. K. ( 2007; ). Identification of differentially activated cell-signaling networks associated with Pichinde virus pathogenesis by using systems kinomics. J Virol 81, 1923–1933.[CrossRef]
    [Google Scholar]
  11. Butz, E. A., Hostager, B. S. & Southern, P. J. ( 1994; ). Macrophages in mice acutely infected with lymphocytic choriomeningitis virus are primed for nitric oxide synthesis. Microb Pathog 16, 283–295.[CrossRef]
    [Google Scholar]
  12. Connolly, B. M., Jenson, A. B., Peters, C. J., Geyer, S. J., Barth, J. F. & McPherson, R. A. ( 1993; ). Pathogenesis of Pichinde virus infection in strain 13 guinea pigs: an immunocytochemical, virologic, and clinical chemistry study. Am J Trop Med Hyg 49, 10–24.
    [Google Scholar]
  13. Debout, C., Birebent, B., Griveau, A.-M. & Izard, J. ( 1993; ). In vitro cytotoxic effect of guinea pig natural killer cells (Kurloff cells) on homologous leukemic cells (L2C). Leukemia 7, 733–735.
    [Google Scholar]
  14. Djavani, M. M., Crasta, O. R., Zapata, J. C., Fei, Z., Folkerts, O., Sobral, B., Swindells, M., Bryant, J., Davis, H. & other authors ( 2007; ). Early blood profiles of virus infection in a monkey model for Lassa fever. J Virol 81, 7960–7973.[CrossRef]
    [Google Scholar]
  15. Ethuin, F., Gerard, B., Benna, J. E., Boutten, A., Gougereot-Pocidalo, M. A., Jacob, L. & Chollet-Martin, S. ( 2004; ). Human neutrophils produce interferon gamma upon stimulation by interleukin-12. Lab Invest 84, 1363–1371.[CrossRef]
    [Google Scholar]
  16. Fantuzzi, L., Spadaro, F., Vallanti, G., Canini, I., Ramoni, C., Vicenzi, E., Belardelli, F., Poli, G. & Gessani, S. ( 2003; ). Endogenous CCL2 (monocyte chemotactic protein-1) modulates human immunodeficiency virus type-1 replication and affects cytoskeleton organization in human monocyte-derived macrophages. Blood 102, 2334–2337.[CrossRef]
    [Google Scholar]
  17. Feldmann, H., Bugany, H., Mahner, F., Klenk, H. D., Drenckhahn, D. & Schnittler, H. J. ( 1996; ). Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. J Virol 70, 2208–2214.
    [Google Scholar]
  18. Fisher-Hoch, S. P., Mitchell, S. W., Sasso, D. R., Lange, J. V., Ramsey, R. & McCormick, J. B. ( 1987; ). Physiological and immunologic disturbances associated with shock in a primate model of Lassa fever. J Infect Dis 155, 465–474.[CrossRef]
    [Google Scholar]
  19. Fisher-Hoch, S. P., Hutwagner, L., Brown, B. & McCormick, J. B. ( 2000; ). Effective vaccine for Lassa fever. J Virol 74, 6777–6783.[CrossRef]
    [Google Scholar]
  20. Geisbert, T. W. & Jahrling, P. B. ( 2004; ). Exotic emerging viral diseases: progress and challenges. Nat Med 10, S110–S121.[CrossRef]
    [Google Scholar]
  21. Geisbert, T. W., Hensley, L. E., Jahrling, P. B., Larsen, T., Geisbert, J. B., Paragas, J., Young, H. A., Fredeking, T. M., Rote, W. E. & Vlasuk, G. P. ( 2003; ). Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 362, 1953–1958.[CrossRef]
    [Google Scholar]
  22. Gowen, B. B., Barnard, D. L., Smee, D. F., Wong, M. H., Pace, A. M., Jung, K. H., Winslow, S. G., Bailey, K. W., Blatt, L. M. & Sidwell, R. W. ( 2005; ). Interferon alfacon-1 protects hamsters from lethal pichinde virus infection. Antimicrob Agents Chemother 49, 2378–2386.[CrossRef]
    [Google Scholar]
  23. Guidotti, L. G., McClary, H., Loudis, J. M. & Chisari, F. V. ( 2000; ). Nitric oxide inhibits hepatitis B virus replication in the livers of transgenic mice. J Exp Med 191, 1247–1252.[CrossRef]
    [Google Scholar]
  24. Gupta, M., Mahanty, S., Ahmed, R. & Rollin, P. E. ( 2001; ). Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with Ebola virus secrete MIP-1α and TNF-α and inhibit poly-IC-induced IFN-α in vitro. Virology 284, 20–25.[CrossRef]
    [Google Scholar]
  25. Hendricks, E. E., Lin, K.-C., Boisvert, K., Pauley, D. & Mansfield, K. ( 2004; ). Alterations in expression of monocyte chemotactic protein-1 in the simian immunodeficiency virus model for disseminated Mycobacterium avium complex. J Infect Dis 189, 1714–1720.[CrossRef]
    [Google Scholar]
  26. Hutchinson, K. L., Villinger, F., Miranda, M. E., Ksiazek, T. G., Peters, C. J. & Rollin, P. E. ( 2001; ). Multiplex analysis of cytokines in the blood of cynomolgus macaques naturally infected with Ebola virus (Reston serotype). J Med Virol 65, 561–566.[CrossRef]
    [Google Scholar]
  27. Inagaki, Y., Yamagishi, S., Amano, S., Okamoto, T., Koga, K. & Makita, Z. ( 2002; ). Interferon-γ-induced apoptosis and activation of THP-1 macrophages. Life Sci 71, 2499–2508.[CrossRef]
    [Google Scholar]
  28. Jahrling, P. B., Hesse, R. A., Rhoderick, J. B., Elwell, M. A. & Moe, J. B. ( 1981; ). Pathogenesis of a Pichinde virus strain adapted to produce lethal infections in guinea pigs. Infect Immun 32, 872–880.
    [Google Scholar]
  29. Jeevan, A., Yoshimura, T., Lee, K. E. & McMurray, D. N. ( 2003; ). Differential expression of gamma interferon mRNA induced by attenuated and virulent Mycobacterium tuberculosis in guinea pig cells after Mycobacterium bovis BCG vaccination. Infect Immun 71, 354–364.[CrossRef]
    [Google Scholar]
  30. Katz, M. A. & Starr, J. F. ( 1990; ). Pichinde virus infection in strain 13 guinea pigs reduces intestinal protein reflection coefficient with compensation. J Infect Dis 162, 1304–1308.[CrossRef]
    [Google Scholar]
  31. Kipar, A., Leutenegger, C. M., Hetzel, U., Akens, M. K., Mislin, C. N., Reinacher, M. & Lutz, H. ( 2001; ). Cytokine mRNA levels in isolated feline monocytes. Vet Immunol Immunopathol 78, 305–315.[CrossRef]
    [Google Scholar]
  32. Levis, S. C., Saavedra, M. C., Ceccoli, C., Feuillade, M. R., Enria, D. A., Maiztegui, J. I. & Falcoff, R. ( 1985; ). Correlation between endogenous interferon and the clinical evolution of patients with Argentine hemorrhagic fever. J Interferon Res 5, 383–389.[CrossRef]
    [Google Scholar]
  33. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  34. Lukashevich, I. S., Maryankova, R., Vladyko, A. S., Nashkevich, N., Koleda, S., Djavani, M., Horejsh, D., Voitenok, N. N. & Salvato, M. S. ( 1999; ). Lassa and Mopeia virus replication in human monocytes/macrophages and in endothelial cells: different effects on IL-8 and TNF-α gene expression. J Med Virol 59, 552–560.[CrossRef]
    [Google Scholar]
  35. Mahanty, S., Bausch, D. G., Thomas, R. L., Goba, A., Bah, A., Peters, C. J. & Rollin, P. E. ( 2001; ). Low levels of interleukin-8 and interferon-inducible protein-10 in serum are associated with fatal infections in acute Lassa fever. J Infect Dis 183, 1713–1721.[CrossRef]
    [Google Scholar]
  36. Mahanty, S., Gupta, M., Paragas, J., Bray, M., Ahmed, R. & Rollin, P. E. ( 2003a; ). Protection from lethal infection is determined by innate immune responses in a mouse model of Ebola virus infection. Virology 312, 415–424.[CrossRef]
    [Google Scholar]
  37. Mahanty, S., Hutchinson, K., Agarwal, S., Mcrae, M., Rollin, P. E. & Pulendran, B. ( 2003b; ). Impairment of dendritic cell and adaptive immunity by Ebola and Lassa viruses. J Immunol 170, 2797–2801.[CrossRef]
    [Google Scholar]
  38. Mantovani, A., Locati, M. & Sozzani, S. ( 2003; ). CC chemokines. In The Cytokine Handbook, vol. II, 4th edn, pp. 1083–1100. Edited by A. R. Thomsen & M. T. Lotze. San Diego: Academic Press.
  39. Marta, R. F., Montero, V. S., Hack, C. E., Sturk, A., Maiztegui, J. I. & Molinas, F. C. ( 1999; ). Proinflammatory cytokines and elastase-α-1-antitrypsin in Argentine hemorrhagic fever. Am J Trop Med Hyg 60, 85–89.
    [Google Scholar]
  40. Martinez-Sobrido, L., Zuniga, E. I., Rosario, D., Garcia-Sastre, A. & de La Torre, J. C. ( 2006; ). Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 80, 9192–9199.[CrossRef]
    [Google Scholar]
  41. McCormick, J. B., King, I. J., Webb, P. A., Johnson, K. M., O'Sullivan, R., Smith, E. S., Trippel, S. & Tong, T. C. ( 1987; ). A case–control study of the clinical diagnosis and course of Lassa fever. J Infect Dis 155, 445–455.[CrossRef]
    [Google Scholar]
  42. Murphy, F. A., Buchmeier, M. J. & Rawls, W. E. ( 1977; ). The reticuloendothelium as the target in a virus infection: Pichinde virus pathogenesis in two strains of hamsters. Lab Invest 37, 502–515.
    [Google Scholar]
  43. Pannetier, D., Faure, C., Georges-Courbot, M. C., Deubel, V. & Baize, S. ( 2004; ). Human macrophages, but not dendritic cells, are activated and produce alpha/beta interferons in response to Mopeia virus infection. J Virol 78, 10516–10524.[CrossRef]
    [Google Scholar]
  44. Qian, C., Jahrling, P. B., Peters, C. J. & Liu, C. T. ( 1994; ). Cardiovascular and pulmonary responses to Pichinde virus infection in strain 13 guinea pigs. Lab Anim Sci 44, 600–607.
    [Google Scholar]
  45. Rutledge, B. J., Rayburn, H., Rosenberg, R., North, R., Gladue, R., Corless, C. & Rollins, B. ( 1995; ). High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. J Immunol 155, 4838–4843.
    [Google Scholar]
  46. Scarozza, A. M., Ramsingh, A. I., Wicher, V. & Wicher, K. ( 1998; ). Spontaneous cytokine gene expression in normal guinea pig blood and tissues. Cytokine 10, 851–858.[CrossRef]
    [Google Scholar]
  47. Schaible, U. E. & Kauffman, S. H. E. ( 2000; ). CD1 molecules and CD1-dependent T cells in bacterial infection: a link from innate to acquired immunity? Semin Immunol 12, 527–535.[CrossRef]
    [Google Scholar]
  48. Schmitz, H., Kohler, B., Laue, T., Drosten, C., Veldkamp, P. J., Gunther, S., Emmerich, P., Geisen, H. P., Fleischer, K. & other authors ( 2002; ). Monitoring of clinical and laboratory data in two cases of imported Lassa fever. Microbes Infect 4, 43–50.[CrossRef]
    [Google Scholar]
  49. Shiratori, I., Matsumoto, M., Tsuji, S., Nomura, M., Toyoshima, K. & Seya, T. ( 2001; ). Molecular cloning and functional characterization of guinea pig IL-12. Int Immunol 13, 1129–1139.[CrossRef]
    [Google Scholar]
  50. Song, A., Nikolcheva, T. & Krensky, A. M. ( 2000; ). Transcriptional regulation of RANTES expression in T lymphocytes. Immunol Rev 177, 236–245.[CrossRef]
    [Google Scholar]
  51. Stephen, E. L., Scott, S. K., Eddy, G. A. & Levy, H. B. ( 1977; ). Effect of interferon on togavirus and arenavirus infections of animals. Tex Rep Biol Med 35, 449–454.
    [Google Scholar]
  52. Trapido, H. & SanMartin, C. ( 1971; ). Pichinde virus: a new virus of the Tacaribe group from Colombia. Am J Trop Med Hyg 20, 631–641.
    [Google Scholar]
  53. White, A.-M., Yoshimura, T., Smith, A. W., Westwick, J. & Watson, M. L. ( 1997; ). Airway inflammation induced by recombinant guinea pig tumor necrosis factor-alpha. Am J Physiol 273, L524–L530.
    [Google Scholar]
  54. Yoshimura, T. ( 1993; ). cDNA cloning of guinea pig monocyte chemoattractant protein-1 and expression of the recombinant protein. J Immunol 150, 5025–5032.
    [Google Scholar]
  55. Yoshimura, T. & Johnson, D. G. ( 1993; ). cDNA cloning and expression of guinea pig neutrophil attractant protein-1 (NAP-1): NAP-1 is highly conserved in guinea pig. J Immunol 151, 6225–6236.
    [Google Scholar]
  56. Yoshimura, T., Takeya, M., Ogata, H., Yamashiro, S., Modi, W. S. & Gillitzer, R. ( 1999; ). Molecular cloning of the guinea pig GRO gene and its rapid expression in the tissues of lipopolysaccharide-injected guinea pigs. Int Arch Allergy Immunol 119, 101–111.[CrossRef]
    [Google Scholar]
  57. Zhang, L., Marriott, K. & Aronson, J. F. ( 1999; ). Sequence analysis of the small RNA segment of guinea pig-passaged Pichinde virus variants. Am J Trop Med Hyg 61, 220–225.
    [Google Scholar]
  58. Zhang, L., Marriott, K., Harnish, D. G. & Aronson, J. F. ( 2001; ). Reassortant analysis of guinea pig virulence of Pichinde virus variants. Virology 290, 30–38.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/002048-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/002048-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error