1887

Abstract

Emergence of antiviral drug resistance is a major challenge to human immunodeficiency virus (HIV) therapy. The archetypal example of this problem is loss of antiviral activity of the nucleoside analogue 3′-azido-3′-deoxythymidine (AZT), caused by mutations in reverse transcriptase (RT), the viral polymerase. AZT resistance results from an imbalance between rates of AZT-induced proviral DNA chain termination and RT-induced excision of the chain-terminating nucleotide. Conversion of the AZT prodrug from its monophosphorylated to diphosphorylated form by human thymidylate kinase (TMPK) is inefficient, resulting in accumulation of the monophosphorylated AZT metabolite (AZT-MP) and a low concentration of the active triphosphorylated metabolite (AZT-TP). We reasoned that introduction of an engineered, highly active TMPK into T cells would overcome this functional bottleneck in AZT activation and thereby shift the balance of AZT activity sufficiently to block replication of formerly AZT-resistant HIV. Molecular engineering was used to link highly active, engineered TMPKs to the protein transduction domain of Tat for direct cell delivery. Combined treatment of HIV-infected T cells with AZT and these cell-permeable, engineered TMPKs restored AZT-induced repression of viral production. These results provide an experimental basis for the development of new strategies to therapeutically increase the intracellular concentrations of active nucleoside analogue metabolites as a means to overcome emerging drug resistance.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/000273-0
2008-07-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/7/1672.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/000273-0&mimeType=html&fmt=ahah

References

  1. Agarwal, R. P. & Mian, A. M. ( 1991; ). Thymidine and zidovudine metabolism in chronically zidovudine-exposed cells in vitro. Biochem Pharmacol 42, 905–911.[CrossRef]
    [Google Scholar]
  2. Arion, D. & Parniak, M. A. ( 1999; ). HIV resistance to zidovudine: the role of pyrophosphorolysis. Drug Resist Updat 2, 91–95.[CrossRef]
    [Google Scholar]
  3. Arion, D., Kaushik, N., McCormick, S., Borkow, G. & Parniak, M. A. ( 1998; ). Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 37, 15908–15917.[CrossRef]
    [Google Scholar]
  4. Brundiers, R., Lavie, A., Veit, T., Reinstein, J., Schlichting, I., Ostermann, N., Goody, R. S. & Konrad, M. ( 1999; ). Modifying human thymidylate kinase to potentiate azidothymidine activation. J Biol Chem 274, 35289–35292.[CrossRef]
    [Google Scholar]
  5. Efthymiadis, A., Briggs, L. J. & Jans, D. A. ( 1998; ). The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem 273, 1623–1628.[CrossRef]
    [Google Scholar]
  6. Foley, G. E., Lazarus, H., Farber, S., Uzman, B. G., Boone, B. A. & McCarthy, R. E. ( 1965; ). Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia. Cancer 18, 522–529.[CrossRef]
    [Google Scholar]
  7. Fridland, A., Connelly, M. C. & Ashmun, R. ( 1990; ). Relationship of deoxynucleotide changes to inhibition of DNA synthesis induced by the antiretroviral agent 3′-azido-3′-deoxythymidine and release of its monophosphate by human lymphoid cells (CCRF-CEM). Mol Pharmacol 37, 665–670.
    [Google Scholar]
  8. Furman, P. A., Fyfe, J. A., St. Clair, M. H., Weinhold, K., Rideout, J. L., Freeman, G. A., Lehrman, S. N., Bolognesi, D. P., Broder, S. & other authors ( 1986; ). Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A 83, 8333–8337.[CrossRef]
    [Google Scholar]
  9. Jong, A. Y. & Campbell, J. L. ( 1984; ). Characterization of Saccharomyces cerevisiae thymidylate kinase, the CDC8 gene product. General properties, kinetic analysis, and subcellular localization. J Biol Chem 259, 14394–14398.
    [Google Scholar]
  10. Junker, U., Baker, J., Kalfoglou, C. S., Veres, G., Kaneshima, H. & Bohnlein, E. ( 1997; ). Antiviral potency of drug–gene therapy combinations against human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 13, 1395–1402.[CrossRef]
    [Google Scholar]
  11. Larder, B. A. & Kemp, S. D. ( 1989; ). Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 246, 1155–1158.[CrossRef]
    [Google Scholar]
  12. Lavie, A., Vetter, I. R., Konrad, M., Goody, R. S., Reinstein, J. & Schlichting, I. ( 1997; ). Structure of thymidylate kinase reveals the cause behind the limiting step in AZT activation. Nat Struct Biol 4, 601–604.[CrossRef]
    [Google Scholar]
  13. Lavie, A., Ostermann, N., Brundiers, R., Goody, R. S., Reinstein, J., Konrad, M. & Schlichting, I. ( 1998; ). Structural basis for efficient phosphorylation of 3′-azidothymidine monophosphate by Escherichia coli thymidylate kinase. Proc Natl Acad Sci U S A 95, 14045–14050.[CrossRef]
    [Google Scholar]
  14. Lowe, S. H., Prins, J. M. & Lange, J. M. ( 2004; ). Antiretroviral therapy in previously untreated adults infected with the human immunodeficiency virus type I: established and potential determinants of virological outcome. Neth J Med 62, 424–440.
    [Google Scholar]
  15. Meier, C., Lorey, M., De Clercq, E. & Balzarini, J. ( 1998; ). Cyclosal-2′,3′-dideoxy-2′,3′-didehydrothymidine monophosphate (cyclosal-d4TMP) – synthesis and antiviral evaluation of a new d4TMP delivery system. J Med Chem 41, 1417–1427.[CrossRef]
    [Google Scholar]
  16. Meyer, P. R., Matsuura, S. E., Mian, A. M., So, A. G. & Scott, W. A. ( 1999; ). A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell 4, 35–43.[CrossRef]
    [Google Scholar]
  17. Nara, P. L. & Fischinger, P. J. ( 1988; ). Quantitative infectivity assay for HIV-1 and -2. Nature 332, 469–470.[CrossRef]
    [Google Scholar]
  18. Nara, P. L., Hatch, W. C., Dunlop, N. M., Robey, W. G., Arthur, L. O., Gonda, M. A. & Fischinger, P. J. ( 1987; ). Simple, rapid, quantitative, syncytium-forming microassay for the detection of human immunodeficiency virus neutralizing antibody. AIDS Res Hum Retroviruses 3, 283–302.[CrossRef]
    [Google Scholar]
  19. Ostermann, N., Lavie, A., Padiyar, S., Brundiers, R., Veit, T., Reinstein, J., Goody, R. S., Konrad, M. & Schlichting, I. ( 2000a; ). Potentiating AZT activation: structures of wild-type and mutant human thymidylate kinase suggest reasons for the mutants' improved kinetics with the HIV prodrug metabolite AZTMP. J Mol Biol 304, 43–53.[CrossRef]
    [Google Scholar]
  20. Ostermann, N., Schlichting, I., Brundiers, R., Konrad, M., Reinstein, J., Veit, T., Goody, R. S. & Lavie, A. ( 2000b; ). Insights into the phosphoryltransfer mechanism of human thymidylate kinase gained from crystal structures of enzyme complexes along the reaction coordinate. Structure 8, 629–642.[CrossRef]
    [Google Scholar]
  21. Qian, M., Bui, T., Ho, R. J. & Unadkat, J. D. ( 1994; ). Metabolism of 3′-azido-3′-deoxythymidine (AZT) in human placental trophoblasts and Hofbauer cells. Biochem Pharmacol 48, 383–389.
    [Google Scholar]
  22. Sarafianos, S. G., Das, K., Clark, A. D., Jr, Ding, J., Boyer, P. L., Hughes, S. H. & Arnold, E. ( 1999; ). Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with β-branched amino acids. Proc Natl Acad Sci U S A 96, 10027–10032.[CrossRef]
    [Google Scholar]
  23. Schwarze, S. R. & Dowdy, S. F. ( 2000; ). In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci 21, 45–48.[CrossRef]
    [Google Scholar]
  24. Schwarze, S. R., Ho, A., Vocero-Akbani, A. & Dowdy, S. F. ( 1999; ). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572.[CrossRef]
    [Google Scholar]
  25. Shaw, G. M., Hahn, B. H., Arya, S. K., Groopman, J. E., Gallo, R. C. & Wong-Staal, F. ( 1984; ). Molecular characterization of human T-cell leukemia (lymphotropic) virus type III in the acquired immune deficiency syndrome. Science 226, 1165–1171.[CrossRef]
    [Google Scholar]
  26. Tkachenko, A. G., Xie, H., Liu, Y., Coleman, D., Ryan, J., Glomm, W. R., Shipton, M. K., Franzen, S. & Feldheim, D. L. ( 2004; ). Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 15, 482–490.[CrossRef]
    [Google Scholar]
  27. Veal, G. J. & Back, D. J. ( 1995; ). Metabolism of zidovudine. Gen Pharmacol 26, 1469–1475.[CrossRef]
    [Google Scholar]
  28. Wagner, C. R., Iyer, V. V. & McIntee, E. J. ( 2000; ). Pronucleotides: toward the in vivo delivery of antiviral and anticancer nucleotides. Med Res Rev 20, 417–451.[CrossRef]
    [Google Scholar]
  29. Wöhrl, B. M., Loubiere, L., Brundiers, R., Goody, R. S., Klatzmann, D. & Konrad, M. ( 2005; ). Expressing engineered thymidylate kinase variants in human cells to improve AZT phosphorylation and human immunodeficiency virus inhibition. J Gen Virol 86, 757–764.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/000273-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/000273-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error