1887

Abstract

Over the course of evolution, viruses have developed the ability to modulate a variety of host cell signalling pathways. Inhibition of apoptosis, in particular, has become recognized as an important contributory factor in virus survival. Apoptotic inhibition contributes to the establishment of latent and chronic infections and has been implicated in viral oncogenesis. The phosphatidylinositol 3-kinase (PI3K)–Akt pathway is utilized by many cell types for inhibition of apoptosis and cellular survival. Virus modulation of this pathway provides an alternative to the expression of viral oncogenes or the direct inhibition of pro-apoptotic proteins. It has become evident that many viruses require up-regulation of this pathway to sustain long-term infections and it is modulated, in some cases, by specific viral products to create an environment favourable for cellular transformation. In other cases, PI3K–Akt signalling simply helps to create an environment favourable for virus replication and virion assembly. This review details the modulation and function of PI3K–Akt signalling for virus survival.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19771-0
2004-05-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/5/vir851065.html?itemId=/content/journal/jgv/10.1099/vir.0.19771-0&mimeType=html&fmt=ahah

References

  1. Albini, A., Benelli, R., Presta, M., Rusnati, M., Ziche, M., Rubartelli, A., Paglialunga, G., Bussolino, F. & Noonan, D. ( 1996; ). HIV-tat protein is a heparin-binding angiogenic growth factor. Oncogene 12, 289–297.
    [Google Scholar]
  2. Antman, K. & Chang, Y. ( 2000; ). Kaposi's sarcoma. N Engl J Med 342, 1027–1038.[CrossRef]
    [Google Scholar]
  3. Arora, V. K., Fredericksen, B. L. & Garcia, J. V. ( 2002; ). Nef: agent of cell subversion. Microbes Infect 4, 189–199.[CrossRef]
    [Google Scholar]
  4. Bais, C., Santomasso, B., Coso, O. & 8 other authors ( 1998; ). G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391, 86–89.[CrossRef]
    [Google Scholar]
  5. Baur, A. S., Sass, G., Laffert, B., Willbold, D., Cheng-Mayer, C. & Peterlin, B. M. ( 1997; ). The N-terminus of Nef from HIV-1/SIV associates with a protein complex containing Lck and a serine kinase. Immunity 6, 283–291.[CrossRef]
    [Google Scholar]
  6. Bellacosa, A., Testa, J. R., Staal, S. P. & Tsichlis, P. N. ( 1991; ). A retroviral oncogene, akt, encoding a serine–threonine kinase containing an SH2-like region. Science 254, 274–277.[CrossRef]
    [Google Scholar]
  7. Benn, J. & Schneider, R. J. ( 1994; ). Hepatitis B virus HBx protein activates Ras–GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A 91, 10350–10354.[CrossRef]
    [Google Scholar]
  8. Benn, J., Su, F., Doria, M. & Schneider, R. J. ( 1996; ). Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases. J Virol 70, 4978–4985.
    [Google Scholar]
  9. Bitko, V., Velazquez, A., Yang, L., Yang, Y. C. & Barik, S. ( 1997; ). Transcriptional induction of multiple cytokines by human respiratory syncytial virus requires activation of NF-κB and is inhibited by sodium salicylate and aspirin. Virology 232, 369–378.[CrossRef]
    [Google Scholar]
  10. Bottomley, M. J., Salim, K. & Panayotou, G. ( 1998; ). Phospholipid-binding protein domains. Biochim Biophys Acta 1436, 165–183.[CrossRef]
    [Google Scholar]
  11. Bresnahan, W. A., Thompson, E. A. & Albrecht, T. ( 1997; ). Human cytomegalovirus infection results in altered Cdk2 subcellular localization. J Gen Virol 78, 1993–1997.
    [Google Scholar]
  12. Briand, G., Barbeau, B. & Tremblay, M. ( 1997; ). Binding of HIV-1 to its receptor induces tyrosine phosphorylation of several CD4-associated proteins, including the phosphatidylinositol 3-kinase. Virology 228, 171–179.[CrossRef]
    [Google Scholar]
  13. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J. & Greenberg, M. E. ( 1999; ). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868.[CrossRef]
    [Google Scholar]
  14. Burgering, B. M. & Medema, R. H. ( 2003; ). Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 73, 689–701.[CrossRef]
    [Google Scholar]
  15. Campbell, K. S., Ogris, E., Burke, B., Su, W., Auger, K. R., Druker, B. J., Schaffhausen, B. S., Roberts, T. M. & Pallas, D. C. ( 1994; ). Polyoma middle tumor antigen interacts with SHC via the NPTY (Asn-Pro-Thr-Tyr) motif in middle tumor antigen. Proc Natl Acad Sci U S A 91, 6344–6348.[CrossRef]
    [Google Scholar]
  16. Cantaluppi, V., Biancone, L., Boccellino, M., Doublier, S., Benelli, R., Carlone, S., Albini, A. & Camussi, G. ( 2001; ). HIV type 1 Tat protein is a survival factor for Kaposi's sarcoma and endothelial cells. AIDS Res Hum Retrovir 17, 965–976.[CrossRef]
    [Google Scholar]
  17. Cantrell, D. A. ( 2001; ). Phosphoinositide 3-kinase signalling pathways. J Cell Sci 114, 1439–1445.
    [Google Scholar]
  18. Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., Frisch, S. & Reed, J. C. ( 1998; ). Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321.[CrossRef]
    [Google Scholar]
  19. Carthy, C. M., Granville, D. J., Watson, K. A., Anderson, D. R., Wilson, J. E., Yang, D., Hunt, D. W. & McManus, B. M. ( 1998; ). Caspase activation and specific cleavage of substrates after coxsackievirus B3-induced cytopathic effect in HeLa cells. J Virol 72, 7669–7675.
    [Google Scholar]
  20. Chan, T. O., Rittenhouse, S. E. & Tsichlis, P. N. ( 1999; ). AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68, 965–1014.[CrossRef]
    [Google Scholar]
  21. Chang, F., Lee, J. T., Navalonic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L., Franklin, R. A. & McCubrey, J. A. ( 2003; ). Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590–603.[CrossRef]
    [Google Scholar]
  22. Chang, Y. & Moore, P. S. ( 1996; ). Kaposi's sarcoma (KS)-associated herpesvirus and its role in KS. Infect Agents Dis 5, 215–222.
    [Google Scholar]
  23. Chen, R. H., Su, Y. H., Chuang, R. L. & Chang, T. Y. ( 1998; ). Suppression of transforming growth factor-β-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway. Oncogene 17, 1959–1968.[CrossRef]
    [Google Scholar]
  24. Cheng, E. H., Nicholas, J., Bellows, D. S., Hayward, G. S., Guo, H. G., Reitz, M. S. & Hardwick, J. M. ( 1997; ). A Bcl-2 homolog encoded by Kaposi's sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci U S A 94, 690–694.[CrossRef]
    [Google Scholar]
  25. Choe, H., Farzan, M., Sun, Y. & 10 other authors ( 1996; ). The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148.[CrossRef]
    [Google Scholar]
  26. Coffer, P. J. & Woodgett, J. R. ( 1991; ). Molecular cloning and characterisation of a novel putative protein–serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 201, 475–481.[CrossRef]
    [Google Scholar]
  27. Collins, P. L., Chanock, R. M. & Murphy, B. R. ( 2001; ). Respiratory syncytial virus. In Fields Virology, 4th edn, pp. 1443–1486. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia: Lippincott Williams & Wilkins.
  28. Cross, D. A., Alessi, D. R., Cohen, P., Anjelkovic, M. & Hemmings, B. A. ( 1995; ). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789.[CrossRef]
    [Google Scholar]
  29. Crusius, K., Auvinen, E., Steuer, B., Gaissert, H. & Alonso, A. ( 1998; ). The human papillomavirus type 16 E5-protein modulates ligand-dependent activation of the EGF receptor family in the human epithelial cell line HaCaT. Exp Cell Res 241, 76–83.[CrossRef]
    [Google Scholar]
  30. Dahl, J., Jurczak, A., Cheng, L. A., Baker, D. C. & Benjamin, T. L. ( 1998; ). Evidence of a role for phosphatidylinositol 3-kinase activation in the blocking of apoptosis by polyomavirus middle T antigen. J Virol 72, 3221–3226.
    [Google Scholar]
  31. Dalgleish, A. G., Beverley, P. C., Clapham, P. R., Crawford, D. H., Greaves, M. F. & Weiss, R. A. ( 1984; ). The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312, 763–767.[CrossRef]
    [Google Scholar]
  32. Darr, C. D., Mauser, A. & Kenny, S. ( 2001; ). Epstein–Barr virus immediate-early protein BRLF1 induces the lytic form of viral replication through a mechanism involving phosphatidylinositol-3 kinase activation. J Virol 75, 6135–6142.[CrossRef]
    [Google Scholar]
  33. Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. & Greenberg, M. E. ( 1997; ). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241.[CrossRef]
    [Google Scholar]
  34. Dawson, C. W., Tramountanis, G., Eliopoulos, A. G. & Young, L. S. (2003; ). Epstein–Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodelling. J Biol Chem 278, 3694–3704.[CrossRef]
    [Google Scholar]
  35. Deregibus, M. C., Cantaluppi, V., Doublier, S., Brizzi, M. F., Deambrosis, I., Albini, A. & Camussi, G. ( 2002; ). HIV-1-Tat protein activates phosphatidylinositol 3-kinase/AKT-dependent survival pathways in Kaposi's sarcoma cells. J Biol Chem 277, 25195–25202.[CrossRef]
    [Google Scholar]
  36. Eliopoulos, A. G. & Young, L. S. ( 1998; ). Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein–Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene 16, 1731–1742.[CrossRef]
    [Google Scholar]
  37. Enamoto, N., Sakuma, I., Asahina, Y. & 7 other authors ( 1996; ). Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N Engl J Med 334, 77–81.[CrossRef]
    [Google Scholar]
  38. Ensoli, B., Barillari, G., Salahuddin, S. Z., Gallo, R. C. & Wong-Staal, F. ( 1990; ). Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature 345, 84–86.[CrossRef]
    [Google Scholar]
  39. Ensoli, B., Buonaguro, L., Barillari, G., Fiorelli, V., Gendelman, R., Morgan, R. A., Wingfield, P. & Gallo, R. C. ( 1993; ). Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67, 277–287.
    [Google Scholar]
  40. Eves, E. M., Xiong, W., Bellacosa, A., Kennedy, S. G., Tsichlis, P. N., Rosner, M. R. & Hay, N. ( 1998; ). Akt, a target of phosphatidylinositol 3-kinase, inhibits apoptosis in a differentiating neuronal cell line. Mol Cell Biol 18, 2143–2152.
    [Google Scholar]
  41. Fackler, O. T., Luo, W., Geyer, M., Alberts, A. S. & Peterlin, B. M. ( 1999; ). Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol Cell 3, 729–739.[CrossRef]
    [Google Scholar]
  42. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. ( 1996; ). HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877.[CrossRef]
    [Google Scholar]
  43. Flemington, E. & Speck, S. H. ( 1990; ). Epstein–Barr virus BZLF1 trans activator induces the promoter of a cellular cognate gene, c-fos. J Virol 64, 4549–4552.
    [Google Scholar]
  44. Francois, F. & Klotman, M. E. ( 2003; ). Phosphatidylinositol 3-kinase regulates human immunodeficiency virus type 1 replication following viral entry in primary CD4+ T lymphocytes and macrophages. J Virol 77, 2539–2549.[CrossRef]
    [Google Scholar]
  45. Gallo, R. C. ( 1998; ). The enigmas of Kaposi's sarcoma. Science 282, 1837–1839.[CrossRef]
    [Google Scholar]
  46. Geleziunas, R., Xu, W., Takeda, K., Ichijo, H. & Greene, W. C. ( 2001; ). HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature 410, 834–838.[CrossRef]
    [Google Scholar]
  47. Georgopoulou, U., Caravokiri, K. & Mavromara, P. ( 2003; ). Suppression of the ERK1/2 signaling pathway from HCV NS5A protein expressed by herpes simplex recombinant viruses. Arch Virol 148, 237–251.[CrossRef]
    [Google Scholar]
  48. Gires, O., Zimber-Strobl, U., Gonnella, R., Ueffing, M., Marschall, G., Zeidler, R., Pich, D. & Hammerschmidt, W. ( 1997; ). Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J 16, 6131–6140.[CrossRef]
    [Google Scholar]
  49. Gires, O., Kohlhuber, F., Kilger, E. & 7 other authors ( 1999; ). Latent membrane protein 1 of Epstein–Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 18, 3064–3073.[CrossRef]
    [Google Scholar]
  50. Gold, M. R., Ingham, R. J., McLeod, S. J., Christian, S. L., Scheid, M. P., Duronio, V., Santos, L. & Matsuuchi, L. ( 2000; ). Targets of B-cell antigen receptor signaling: the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway and the Rap1 GTPase. Immunol Rev 176, 47–68.[CrossRef]
    [Google Scholar]
  51. Gottlieb, K. A. & Villarreal, L. P. ( 2001; ). Natural biology of polyomavirus middle T antigen. Microbiol Mol Biol Rev 65, 288–318.[CrossRef]
    [Google Scholar]
  52. Haeberle, H. A., Takizawa, R., Casola, A., Brasier, A. R., Dieterich, H. J., Van Rooijen, N., Gatalica, Z. & Garofalo, R. P. ( 2002; ). Respiratory syncytial virus-induced activation of nuclear factor-κB in the lung involves alveolar macrophages and toll-like receptor 4-dependent pathways. J Infect Dis 186, 1199–1206.[CrossRef]
    [Google Scholar]
  53. Hatano, E. & Brenner, D. A. ( 2001; ). Akt protects mouse hepatocytes from TNF-α- and Fas-mediated apoptosis through NF-κB activation. Am J Physiol Gastrointest Liver Physiol 281, G1357–1368.
    [Google Scholar]
  54. Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R. & Schiller, J. T. ( 1989; ). HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 8, 3905–3910.
    [Google Scholar]
  55. He, Y., Nakao, H., Tan, S. L., Polyak, S. J., Neddermann, P., Vijaysri, S., Jacobs, B. L. & Katze, M. G. ( 2002; ). Subversion of cell signaling pathways by hepatitis C virus nonstructural 5A protein via interaction with Grb2 and P85 phosphatidylinositol 3-kinase. J Virol 76, 9207–9217.[CrossRef]
    [Google Scholar]
  56. Hwang, E. S., Nottoli, T. & Dimaio, D. ( 1995; ). The HPV-16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology 211, 227–233.[CrossRef]
    [Google Scholar]
  57. Izumi, K. M., Cahir McFarland, E. D., Ting, A. T., Riley, E. A., Seed, B. & Kieff, E. D. ( 1999; ). The Epstein–Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-κB activation. Mol Cell Biol 19, 5759–5767.
    [Google Scholar]
  58. Johnson, R. A., Huong, S. M. & Huang, E. S. ( 2000; ). Activation of the mitogen-activated protein kinase p38 by human cytomegalovirus infection through two distinct pathways: a novel mechanism for activation of p38. J Virol 74, 1158–1167.[CrossRef]
    [Google Scholar]
  59. Johnson, R. A., Ma, X. L., Yurochko, A. D. & Huang, E. S. ( 2001a; ). The role of MKK1/2 kinase activity in human cytomegalovirus infection. J Gen Virol 82, 493–497.
    [Google Scholar]
  60. Johnson, R. A., Wang, X., Ma, X. L., Huong, S. M. & Huang, E. S. ( 2001b; ). Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits viral replication and virus-induced signaling. J Virol 75, 6022–6032.[CrossRef]
    [Google Scholar]
  61. Jones, P. F., Jakubowicz, T., Pitossi, F. J., Maurer, F. & Hemmings, B. A. ( 1991; ). Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A 88, 4171–4175.[CrossRef]
    [Google Scholar]
  62. Joo, C. H., Hong, H. N., Kim, E. O. & 7 other authors ( 2003; ). Coxsackievirus B3 induces apoptosis in the early phase of murine myocarditis: a comparative analysis of cardiovirulent and noncardiovirulent strains. Intervirology 46, 135–140.[CrossRef]
    [Google Scholar]
  63. Kaplan, D. R., Whitman, M., Schaffhausen, B., Raptis, L., Garcea, R. L., Pallas, D., Roberts, T. M. & Cantley, L. ( 1986; ). Phosphatidylinositol metabolism and polyoma-mediated transformation. Proc Natl Acad Sci U S A 83, 3624–3628.[CrossRef]
    [Google Scholar]
  64. Kaur, P., McDougall, J. K. & Cone, R. ( 1989; ). Immortalization of primary human epithelial cells by cloned cervical carcinoma DNA containing human papillomavirus type 16 E6/E7 open reading frames. J Gen Virol 70, 1261–1266.[CrossRef]
    [Google Scholar]
  65. Khwaja, A. ( 1999; ). Akt is more than just a Bad kinase. Nature 401, 33–34.[CrossRef]
    [Google Scholar]
  66. Kieff, E. & Rickinson, A. B. ( 2001; ). Epstein–Barr virus and its replication. In Fields Virology, 4th edn, pp. 2511–2574. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia: Lippincott Williams & Wilkins.
  67. Kong, X., San Juan, H., Kumar, M., Behera, A. K., Mohapatra, A., Hellermann, G. R., Mane, S., Lockey, R. F. & Mohapatra, S. S. ( 2003; ). Respiratory syncytial virus infection activates STAT signaling in human epithelial cells. Biochem Biophys Res Commun 306, 616–622.[CrossRef]
    [Google Scholar]
  68. Kulik, G., Klippel, A. & Weber, M. J. ( 1997; ). Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 17, 1595–1606.
    [Google Scholar]
  69. Lan, K. H., Sheu, M. L., Hwang, S. J. & 8 other authors ( 2002; ). HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 21, 4801–4811.[CrossRef]
    [Google Scholar]
  70. Lee, Y. I., Kang-Park, S. & Do, S. I. ( 2001; ). The hepatitis B virus-X protein activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem 276, 16969–16977.[CrossRef]
    [Google Scholar]
  71. Leslie, N. R., Downes, C. P., Maehama, T. & Dixon, J. E. ( 2002; ). PTEN: the down side of PI 3-kinase signalling. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. Cell Signal 14, 285–295.[CrossRef]
    [Google Scholar]
  72. Linnemann, T., Zheng, Y. H., Mandic, R. & Peterlin, B. M. ( 2002; ). Interaction between Nef and phosphatidylinositol-3-kinase leads to activation of p21-activated kinase and increased production of HIV. Virology 294, 246–255.[CrossRef]
    [Google Scholar]
  73. Longnecker, R., Miller, C. L., Miao, X. Q., Marchini, A. & Kieff, E. ( 1992; ). The only domain which distinguishes Epstein–Barr virus latent membrane protein 2A (LMP2A) from LMP2B is dispensable for lymphocyte infection and growth transformation in vitro; LMP2A is therefore nonessential. J Virol 66, 6461–6469.
    [Google Scholar]
  74. Maehama, T. & Dixon, J. E. ( 1999; ). PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9, 125–128.[CrossRef]
    [Google Scholar]
  75. Miller, C. L., Lee, J. H., Kieff, E. & Longnecker, R. ( 1994; ). An integral membrane protein (LMP2) blocks reactivation of Epstein–Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci U S A 91, 772–776.[CrossRef]
    [Google Scholar]
  76. Moore, P. S., Boshoff, C., Weiss, R. A. & Chang, Y. ( 1996; ). Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274, 1739–1744.[CrossRef]
    [Google Scholar]
  77. Mosialos, G., Birkenbach, M., Yalamanchili, R., VanArsdale, T., Ware, C. & Kieff, E. ( 1995; ). The Epstein–Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80, 389–399.[CrossRef]
    [Google Scholar]
  78. Munger, K., Phelps, W. C., Bubb, V., Howley, P. M. & Schlegl, R. ( 1989; ). The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63, 4417–4421.
    [Google Scholar]
  79. Murakami, S. ( 1999; ). Hepatitis B virus X protein: structure, function and biology. Intervirology 42, 81–99.[CrossRef]
    [Google Scholar]
  80. Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M. & Donner, D. B. ( 1999; ). NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 401, 82–85.[CrossRef]
    [Google Scholar]
  81. Pap, M. & Cooper, G. M. ( 1998; ). Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 273, 19929–19932.[CrossRef]
    [Google Scholar]
  82. Pass, R. F. ( 2001; ). Cytomeglovirus. In Fields Virology, 4th edn, pp. 2675–2706. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia: Lippincott Williams & Wilkins.
  83. Qadri, I., Iwahashi, M. & Simon, F. ( 2002; ). Hepatitis C virus NS5A protein binds TBP and p53, inhibiting their DNA binding and p53 interactions with TBP and ERCC3. Biochim Biophys Acta 1592, 193–204.[CrossRef]
    [Google Scholar]
  84. Rena, G., Guo, S., Cichy, S. C., Unterman, T. G. & Cohen, P. ( 1999; ). Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 274, 17179–17183.[CrossRef]
    [Google Scholar]
  85. Rickinson, A. B. & Kieff, E. ( 2001; ). Epstein–Barr virus. In Fields Virology, 4th edn, pp. 2575–2628. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia: Lippincott Williams & Wilkins.
  86. Roberts, M. L. & Cooper, N. R. ( 1998; ). Activation of a ras–MAPK-dependent pathway by Epstein–Barr virus latent membrane protein 1 is essential for cellular transformation. Virology 240, 93–99.[CrossRef]
    [Google Scholar]
  87. Romashkova, J. A. & Makarov, S. S. ( 1999; ). NF-κB is a target of Akt in anti-apoptotic PDGF signalling. Nature 401, 86–90.[CrossRef]
    [Google Scholar]
  88. Roulston, A., Marcellus, R. C. & Branton, P. E. ( 1999; ). Viruses and apoptosis. Annu Rev Microbiol 53, 577–628.[CrossRef]
    [Google Scholar]
  89. Scheid, M. P. & Woodgett, J. R. ( 2003; ). Unraveling the activation mechanism of protein kinase B/Akt. FEBS Letters 546, 108–112.[CrossRef]
    [Google Scholar]
  90. Scholle, F., Bendt, K. M. & Raab-Traub, N. ( 2000; ). Epstein–Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J Virol 74, 10681–10689.[CrossRef]
    [Google Scholar]
  91. Shih, W. L., Kuo, M. L., Chuang, S. E., Cheng, A. L. & Doong, S. L. ( 2000; ). Hepatitis B virus X protein inhibits transforming growth factor-β-induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. J Biol Chem 275, 25858–25864.[CrossRef]
    [Google Scholar]
  92. Shih, W. L., Kuo, M. L., Chuang, S. E., Cheng, A. L. & Doong, S. L. ( 2003; ). Hepatitis B virus X protein activates a survival signaling by linking SRC to phosphatidylinositol 3-kinase. J Biol Chem 278, 31807–31813.[CrossRef]
    [Google Scholar]
  93. Simmons, A., Aluvihare, V. & McMichael, A. ( 2001; ). Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 14, 763–777.[CrossRef]
    [Google Scholar]
  94. Speck, P., Kline, K. A., Cheresh, P. & Longnecker, R. ( 1999; ). Epstein–Barr virus lacking latent membrane protein 2 immortalizes B cells with efficiency indistinguishable from that of wild-type virus. J Gen Virol 80, 2193–2203.
    [Google Scholar]
  95. Staal, S. P., Hartley, J. W. & Rowe, W. P. ( 1977; ). Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci U S A 74, 3065–3067.[CrossRef]
    [Google Scholar]
  96. Su, W., Liu, W., Schaffhausen, B. S. & Roberts, T. M. ( 1995; ). Association of Polyomavirus middle tumor antigen with phospholipase C-γ1. J Biol Chem 270, 12331–12334.[CrossRef]
    [Google Scholar]
  97. Summers, S. A., Lipfert, L. & Birnbaum, M. J. ( 1998; ). Polyoma middle T antigen activates the Ser/Thr kinase Akt in a PI3-kinase-dependent manner. Biochem Biophys Res Commun 246, 76–81.[CrossRef]
    [Google Scholar]
  98. Swart, R., Ruf, I. K., Sample, J. & Longnecker, R. ( 2000; ). Latent membrane protein 2A-mediated effects on the phosphatidylinositol 3-kinase/Akt pathway. J Virol 74, 10838–10845.[CrossRef]
    [Google Scholar]
  99. Tan, S. L., Nakao, H., He, Y., Vijaysri, S., Neddermann, P., Jacobs, B. L., Mayer, B. J. & Katze, M. G. ( 1999; ). NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling. Proc Natl Acad Sci U S A 96, 5533–5538.[CrossRef]
    [Google Scholar]
  100. Thomas, K. W., Monick, M. M., Staber, J. M., Yarovinsky, T., Carter, A. B. & Hunninghake, G. W. ( 2002; ). Respiratory syncytial virus inhibits apoptosis and induces NF-κB activity through a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 277, 492–501.[CrossRef]
    [Google Scholar]
  101. Tyler, K. L. & Nathanson, N. ( 2001; ). Pathogenesis of viral infections. In Fields Virology, 4th edn, pp. 199–244. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia: Lippincott Williams & Wilkins.
  102. Vanhaesebroeck, B. & Alessi, D. R. ( 2000; ). The PI3K–PDK1 connection: more than just a road to PKB. Biochem J 346, 561–576.[CrossRef]
    [Google Scholar]
  103. Vanhaesebroeck, B. & Waterfield, M. D. ( 1999; ). Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res 253, 239–254.
    [Google Scholar]
  104. Vanhaesebroeck, B., Leevers, S. J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P. C., Woscholski, R., Parker, P. J. & Waterfield, M. D. ( 2001; ). Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70, 535–602.[CrossRef]
    [Google Scholar]
  105. Webster, M. A., Hutchinson, J. N., Rauh, M. J., Muthuswamy, S. K., Anton, M., Tortorice, C. G., Cardiff, R. D., Graham, F. L., Hassell, J. A. & Muller, W. J. ( 1998; ). Requirement for both Shc and phosphatidylinositol 3′ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol Cell Biol 18, 2344–2359.
    [Google Scholar]
  106. Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L. & Roberts, T. M. ( 1985; ). Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315, 239–242.[CrossRef]
    [Google Scholar]
  107. Wolf, D., Witte, V., Laffert, B., Blume, K., Stromer, E., Trapp, S., d'Aloja, P., Schurmann, A. & Baur, A. S. ( 2001; ). HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad phosphorylation to induce anti-apoptotic signals. Nat Med 11, 1217–1224.
    [Google Scholar]
  108. Yang, D., Yu, J., Luo, Z., Carthy, C. M., Wilson, J. E., Liu, Z. & McManus, B. M. ( 1999; ). Viral myocarditis: identification of five differentially expressed genes in coxsackievirus B3-infected mouse heart. Circ Res 84, 704–712.[CrossRef]
    [Google Scholar]
  109. Yang, C. H., Murti, A., Pfeffer, S. R., Kim, J. G., Donner, D. B. & Pfeffer, L. M. ( 2001; ). Interferon α/β promotes cell survival by activating nuclear factor κB through phosphatidylinositol 3-kinase and Akt. J Biol Chem 276, 13756–13761.
    [Google Scholar]
  110. Yu, Y. & Alwine, J. C. ( 2002; ). Human cytomegalovirus major immediate-early proteins and simian virus 40 large T antigen can inhibit apoptosis through activation of the phosphatidylinositide 3′-OH kinase pathway and the cellular kinase Akt. J Virol 76, 3731–3738.[CrossRef]
    [Google Scholar]
  111. Yurochko, A. D., Mayo, M. W., Poma, E. E., Baldwin, A. S., Jr & Huang, E. S. ( 1997a; ). Induction of the transcription factor Sp1 during human cytomegalovirus infection mediates upregulation of the p65 and p105/p50 NF-κB promoters. J Virol 71, 4638–4648.
    [Google Scholar]
  112. Yurochko, A. D., Hwang, E. S., Rasmussen, L., Keay, S., Pereira, L. & Huang, E. S. ( 1997b; ). The human cytomegalovirus UL55 (gB) and UL75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF-κB during infection. J Virol 71, 5051–5059.
    [Google Scholar]
  113. Zalani, S., Holley-Guthrie, E. & Kenney, S. ( 1996; ). Epstein–Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. Proc Natl Acad Sci U S A 93, 9194–9199.[CrossRef]
    [Google Scholar]
  114. Zhang, B., Spandau, D. F. & Roman, A. ( 2002; ). E5 protein of human papillomavirus type 16 protects human foreskin keratinocyes from UV B-irradiation-induced apoptosis. J Virol 76, 220–231.[CrossRef]
    [Google Scholar]
  115. Zhang, H. M., Yuan, J., Cheung, P. & 9 other authors ( 2003; ). Overexpression of interferon-γ-inducible GTPase inhibits coxsackievirus B3-induced apoptosis through the activation of the phosphatidylinositol 3-kinase/Akt pathway and inhibition of viral replication. J Biol Chem 278, 33011–33019.[CrossRef]
    [Google Scholar]
  116. Zhu, H., Shen, Y. & Shenk, T. ( 1995; ). Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J Virol 69, 7960–7970.
    [Google Scholar]
  117. zur Hausen, H. ( 2002; ). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2, 342–350.[CrossRef]
    [Google Scholar]
  118. zur Hausen, H. & de Villiers, E. M. ( 1994; ). Human papillomaviruses. Annu Rev Microbiol 48, 427–447.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19771-0
Loading
/content/journal/jgv/10.1099/vir.0.19771-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error