1887

Abstract

For the cell-to-cell movement of cucumoviruses both the movement protein (MP) and the coat protein (CP) are required. These are not reversibly exchangeable between (CMV) and (TAV). The MP of CMV is able to function with the TAV CP (chimera RT), but TAV MP is unable to promote the cell-to-cell movement in the presence of CMV CP (chimera TR). To gain further insight into the non-infectious nature of the TR recombinant, RNA 3 chimeras were constructed with recombinant MPs and CPs. The chimeric MP and one of the CP recombinants were infectious. The other recombinant CP enabled virus movement only after the introduction of two point mutations (Glu→Lys and Lys→Arg at aa 62 and 65, respectively). The mutations served to correct the CP surface electrostatic potential that was altered by the recombination. The infectivity of the TR virus on different test plants was restored by replacing the sequence encoding the C-terminal 29 aa of the MP with the corresponding sequence of the CMV MP gene or by exchanging the sequence encoding the C-terminal 15 aa of the CP with the same region of TAV. The analysis of the recombinant clones suggests a requirement for compatibility between the C-terminal 29 aa of the MP and the C-terminal two-thirds of the CP for cell-to-cell movement of cucumoviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19687-0
2004-04-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/4/vir851039.html?itemId=/content/journal/jgv/10.1099/vir.0.19687-0&mimeType=html&fmt=ahah

References

  1. Béclin, C., Berthome, R., Palauqui, J. C., Tepfer, M. & Vaucheret, H. ( 1998; ). Infection of tobacco or Arabidopsis plants by CMV counteracts systemic post-transcriptional silencing of nonviral (trans) genes. Virology 252, 313–317.[CrossRef]
    [Google Scholar]
  2. Brigneti, G., Voinnet, O., Li, W. X., Ji, L. H., Ding, S. W. & Baulcombe, D. C. ( 1998; ). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17, 6739–6746.[CrossRef]
    [Google Scholar]
  3. Carrington, J. C., Kasschau, K. D., Mahajan, S. K. & Schaad, M. C. ( 1996; ). Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8, 1669–1681.[CrossRef]
    [Google Scholar]
  4. Cooper, B. & Dodds, J. A. ( 1995; ). Differences in the subcellular localization of tobacco mosaic virus and cucumber mosaic virus movement proteins in infected and transgenic plants. J Gen Virol 76, 3217–3221.[CrossRef]
    [Google Scholar]
  5. Ding, B., Li, Q., Nguyen, L., Palukaitis, P. & Lucas, W. J. ( 1995; ). Cucumber mosaic virus 3a protein potentiates cell-to-cell trafficking of CMV RNA in tobacco plants. Virology 10, 345–353.
    [Google Scholar]
  6. Ding, S. W., Shi, B. J., Li, W. X. & Symons, R. H. ( 1996; ). An interspecies hybrid RNA virus is significantly more virulent than either parental virus. Proc Natl Acad Sci U S A 93, 7470–7474.[CrossRef]
    [Google Scholar]
  7. Fenczik, C. A., Padgett, H. S., Holt, C. A., Casper, S. J. & Beachy, R. N. ( 1995; ). Mutational analysis of the movement protein of odontoglossum ringspot virus to identify a host-range determinant. Mol Plant Microbe Interact 8, 666–673.[CrossRef]
    [Google Scholar]
  8. Gilson, M. K., Sharp, K. A. & Honig, B. ( 1987; ). Calculating electrostatic interactions in biomolecules: method and error assessment. J Comp Chem 9, 327–335.
    [Google Scholar]
  9. Guex, N. & Peitsch, M. C. ( 1997; ). swiss-model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.[CrossRef]
    [Google Scholar]
  10. Huppert, E., Szilassy, D., Salánki, K., Divéki, Z. & Balázs, E. ( 2002; ). Heterologous movement protein strongly modifies the infection phenotype of cucumber mosaic virus. J Virol 76, 3554–3557.[CrossRef]
    [Google Scholar]
  11. Kaplan, I. B., Shintaku, M. H., Li, Q., Zhang, L., Marsh, L. E. & Palukaitis, P. ( 1995; ). Complementation of virus movement in transgenic tobacco expressing the cucumber mosaic virus 3a gene. Virology 10, 188–199.
    [Google Scholar]
  12. Kaplan, I. B., Zhang, L. & Palukaitis, P. ( 1998; ). Characterization of cucumber mosaic virus. V. Cell-to-cell movement requires capsid protein but not virions. Virology 5, 221–231.
    [Google Scholar]
  13. Kroner, P. & Ahlquist, P. ( 1992; ). RNA-based viruses. In Molecular Plant Pathology. A Practical Approach, vol. I, pp. 23–34. Oxford: IRL Press.
  14. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. ( 1993; ). procheck: a program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283–291.[CrossRef]
    [Google Scholar]
  15. Lazarowitz, S. G. & Beachy, R. N. ( 1999; ). Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11, 535–548.[CrossRef]
    [Google Scholar]
  16. Li, Q. & Palukaitis, P. ( 1996; ). Comparison of the nucleic acid- and NTP-binding properties of the movement protein of cucumber mosaic cucumovirus and tobacco mosaic tobamovirus. Virology 216, 71–79.[CrossRef]
    [Google Scholar]
  17. Li, Q., Ryu, K. H. & Palukaitis, P. ( 2001; ). Cucumber mosaic virus–plant interactions: identification of 3a protein sequences affecting infectivity, cell-to-cell movement, and long-distance movement. Mol Plant Microbe Interact 14, 378–385.[CrossRef]
    [Google Scholar]
  18. Liang, J., Edelsbrunner, H. & Woodward, C. ( 1998; ). Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7, 1884–1897.[CrossRef]
    [Google Scholar]
  19. Liu, H., Boulton, M. I., Oparka, K. J. & Davies, J. W. ( 2001; ). Interaction of the movement and coat proteins of Maize streak virus: implications for the transport of viral DNA. J Gen Virol 82, 35–44.
    [Google Scholar]
  20. Liu, S., He, X., Park, G., Josefsson, C. & Perry, K. L. ( 2002; ). A conserved capsid protein surface domain of Cucumber mosaic virus is essential for efficient aphid vector transmission. J Virol 76, 9756–9762.[CrossRef]
    [Google Scholar]
  21. Lot, H., Marrou, J., Quiot, J. B. & Esvan, C. ( 1972; ). Contribution á l'étude du virus de la mosaique du concombre (CMV). I. Méthode de purification rapide du virus. Ann Phytopath 4, 25–38.
    [Google Scholar]
  22. Lucas, R. W., Steven, B. L., Canady, M. A. & McPherson, A. ( 2002; ). The structure of tomato aspermy virus by X-ray crystallography. J Struct Biol 139, 90–102.[CrossRef]
    [Google Scholar]
  23. Melcher, U. ( 1990; ). Similarities between putative transport proteins of plant viruses. J Gen Virol 71, 1009–1018.[CrossRef]
    [Google Scholar]
  24. Morozov, S. Y., Solovyev, A. G., Kalinina, N. O., Fedorkin, O. N., Samuilova, O. V., Schiemann, J. & Atabekov, J. G. ( 1999; ). Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein. Virology 260, 55–63.[CrossRef]
    [Google Scholar]
  25. Nagano, H., Okuno, T., Mise, K. & Furusawa, I. ( 1997; ). Deletion of the C-terminal 33 amino acids of cucumber mosaic virus movement protein enables a chimeric brome mosaic virus to move from cell to cell. J Virol 71, 2270–2276.
    [Google Scholar]
  26. Nagano, H., Mise, K., Furusawa, I. & Okuno, T. ( 2001; ). Conversion in the requirement of coat protein in cell-to-cell movement mediated by the cucumber mosaic virus movement protein. J Virol 75, 8045–8053.[CrossRef]
    [Google Scholar]
  27. Nagy, J. I. & Maliga, P. ( 1976; ). Callus induction and plant regeneration from mesophyll protoplasts of Nicotiana sylvestris. Z Pflanzenphysiol 78, 453–455.[CrossRef]
    [Google Scholar]
  28. Náray-Szabó, G. ( 1993; ). Analysis of molecular recognition: steric electrostatic and hydrophobic complementarity. J Mol Recognit 6, 205–210.[CrossRef]
    [Google Scholar]
  29. Nicholls, A., Sharp, K. & Honig, B. ( 1991; ). Protein folding and association – insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct Funct Genet 11, 281–296.[CrossRef]
    [Google Scholar]
  30. Nitta, N., Takanami, Z., Kuwata, S. & Kubo, S. ( 1988; ). Inoculation with RNAs 1 and 2 of cucumber mosaic virus induces viral RNA replicase activity in tobacco mesophyll protoplasts. J Gen Virol 69, 2695–2700.[CrossRef]
    [Google Scholar]
  31. Perry, K. L., Zhang, L., Shintaku, M. H. & Palukaitis, P. ( 1994; ). Mapping determinants in cucumber mosaic virus for transmission by Aphis gossypii. Virology 205, 591–595.[CrossRef]
    [Google Scholar]
  32. Perry, K. L., Zhang, L. & Palukaitis, P. ( 1998; ). Amino acid changes in the coat protein of cucumber mosaic virus differentially affect transmission by the aphids Myzus persicae and Aphis gossypii. Virology 242, 204–210.[CrossRef]
    [Google Scholar]
  33. Ryabov, E. V., Roberts, I. M., Palukaitis, P. & Taliansky, M. ( 1999; ). Host-specific cell-to-cell and long-distance movements of cucumber mosaic virus are facilitated by the movement protein of groundnut rosette virus. Virology 260, 98–108.[CrossRef]
    [Google Scholar]
  34. Salánki, K., Balázs, E. & Burgyán, J. ( 1994; ). Nucleotide sequence and infectious in vitro transcripts of RNA 3 of tomato aspermy virus pepper isolate. Virus Res 33, 281–289.[CrossRef]
    [Google Scholar]
  35. Salánki, K., Carrere, I., Jacquemond, M., Balázs, E. & Tepfer, M. ( 1997; ). Biological properties of pseudorecombinant and recombinant strains created with cucumber mosaic virus and tomato aspermy virus. J Virol 71, 3597–3602.
    [Google Scholar]
  36. Sali, A. ( 1995; ). Modeling mutations and homologous proteins. Curr Opin Biotechnol 6, 437–451.[CrossRef]
    [Google Scholar]
  37. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Sánchez-Navarro, J. A. & Bol, J. F. ( 2001; ). Role of the alfalfa mosaic virus movement protein and coat protein in virus transport. Mol Plant Microbe Interact 14, 1051–1062.[CrossRef]
    [Google Scholar]
  39. Schmitz, I. & Rao, A. L. ( 1998; ). Deletions in the conserved amino-terminal basic arm of cucumber mosaic virus coat protein disrupt virion assembly but do not abolish infectivity and cell-to-cell movement. Virology 248, 323–331.[CrossRef]
    [Google Scholar]
  40. Shi, B. J., Miller, J., Symons, R. H. & Palukaitis, P. ( 2003; ). The 2b protein of cucumoviruses has a role in promoting the cell-to-cell movement of pseudorecombinant viruses. Mol Plant Microbe Interact 16, 261–267.[CrossRef]
    [Google Scholar]
  41. Shintaku, M. H., Zhang, L. & Palukaitis, P. ( 1992; ). A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco. Plant Cell 4, 751–757.[CrossRef]
    [Google Scholar]
  42. Smith, T. J., Chase, E., Schmidt, T. & Perry, K. L. ( 2000; ). The structure of cucumber mosaic virus and comparison to cowpea chlorotic mottle virus. J Virol 74, 7578–7586.[CrossRef]
    [Google Scholar]
  43. Soards, A. J., Murphy, A. M., Palukaitis, P. & Carr, J. P. ( 2002; ). Virulence and differential local and systemic spread of cucumber mosaic virus in tobacco are affected by the CMV 2b protein. Mol Plant Microbe Interact 15, 647–653.[CrossRef]
    [Google Scholar]
  44. Soellick, T., Uhrig, J. F., Bucher, G. L., Kellmann, J. W. & Schreier, P. H. ( 2000; ). The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci U S A 97, 2373–2378.[CrossRef]
    [Google Scholar]
  45. Suzuki, M., Kuwata, S., Kataoka, J., Masuta, C., Nitta, N. & Takanami, Y. ( 1991; ). Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology 183, 106–113.[CrossRef]
    [Google Scholar]
  46. Suzuki, M., Kuwata, S., Masuta, C. & Takanami, Y. ( 1995; ). Point mutations in the coat protein of cucumber mosaic virus affect symptom expression and virion accumulation in tobacco. J Gen Virol 76, 1791–1799.[CrossRef]
    [Google Scholar]
  47. Suzuki, M., Yoshida, M., Yoshinuma, T. & Hibi, T. ( 2003; ). Interaction of replicase components between cucumber mosaic virus and peanut stunt virus. J Gen Virol 84, 1931–1939.[CrossRef]
    [Google Scholar]
  48. Szilassy, D., Salánki, K. & Balázs, E. ( 1999; ). Stunting induced by cucumber mosaic cucumovirus-infected Nicotiana glutinosa is determined by a single amino acid residue in the coat protein. Mol Plant Microbe Interact 12, 1105–1113.[CrossRef]
    [Google Scholar]
  49. Vaquero, C., Turner, A. P., Demangeat, G., Sanz, A., Serra, M. T., Roberts, K. & Garcia-Luque, I. ( 1994; ). The 3a protein from cucumber mosaic virus increases the gating capacity of plasmodesmata in transgenic tobacco plants. J Gen Virol 75, 3193–3197.[CrossRef]
    [Google Scholar]
  50. Vaquero, C., Sanz, A. I., Serra, M. T. & Garcia-Luque, I. ( 1996; ). Accumulation kinetics of CMV RNA 3-encoded proteins and subcellular localization of the 3a protein in infected and transgenic tobacco plants. Arch Virol 141, 987–999.[CrossRef]
    [Google Scholar]
  51. Vaquero, C., Liao, Y. C., Nahring, J. & Fischer, R. ( 1997; ). Mapping of the RNA-binding domain of the cucumber mosaic virus movement protein. J Gen Virol 78, 2095–2099.
    [Google Scholar]
  52. Weiner, S. J., Kollman, P. A., Case, D. A. U., Singh, C., Ghio, C., Alagona, G., Profeta, S. & Weiner, P. ( 1984; ). A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106, 765–784.[CrossRef]
    [Google Scholar]
  53. White, J. L. & Kaper, J. M. ( 1989; ). A simple method for detection of viral satellite RNAs in small tissue samples. J Virol Methods 23, 83–94.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19687-0
Loading
/content/journal/jgv/10.1099/vir.0.19687-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error