1887

Abstract

The human herpesvirus 6 (HHV-6) immediate-early (IE) 1 protein undergoes SUMOylation events during the infectious process. In the present work, we report that Lys-802 (K-802) of IE1 from HHV-6 variant B is the only target residue capable of conjugation to SUMO-1/SMT3C/Sentrin-1, SUMO-2/SMT3A/Sentrin-3 or SUMO-3/SMT3B/Sentrin-2 as determined by transfection and SUMOylation experiments. PolySUMOylated forms of IE1 were also observed, suggesting that SUMO branching occurs at the K-802 residue. Overexpression of SUMO-1, -2 and -3 led to an overall increase in IE1 levels, irrespective of K-802. The SUMO residues could be efficiently removed by incubating SUMOylated IE1 with SENP1, a recently identified SUMO peptidase. SUMOylation-deficient mutants of IE1 co-localized with nuclear promyelocytic leukaemia protein (PML) oncogenic domains (PODs) as efficiently as WT IE1, indicating that POD targeting is independent of IE1 SUMOylation status. However, in contrast to infection, PODs did not aggregate in IE1B-transfected cells, suggesting that other viral proteins are involved in the process. Transactivation studies indicated that IE1, in combination with IE2, could efficiently transactivate diverse promoters, independent of its SUMOylation status. Overall, the results presented provide a detailed biochemical characterization of post-translational modifications of the HHV-6 IE1 protein by SUMO peptides, contributing to our understanding of the complex interactions between herpesviruses and the SUMO-conjugation pathway.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19610-0
2004-05-01
2019-11-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/5/vir851319.html?itemId=/content/journal/jgv/10.1099/vir.0.19610-0&mimeType=html&fmt=ahah

References

  1. Adamson, A. L. & Kenney, S. ( 2001; ). Epstein–Barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 75, 2388–2399.[CrossRef]
    [Google Scholar]
  2. Ahn, J. H., Xu, Y., Jang, W. J., Matunis, M. J. & Hayward, G. S. ( 2001; ). Evaluation of interactions of human cytomegalovirus immediate-early IE2 regulatory protein with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. J Virol 75, 3859–3872.[CrossRef]
    [Google Scholar]
  3. Desterro, J. M., Thomson, J. & Hay, R. T. ( 1997; ). Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 417, 297–300.[CrossRef]
    [Google Scholar]
  4. Desterro, J. M., Rodriguez, M. S. & Hay, R. T. ( 1998; ). SUMO-1 modification of IκBα inhibits NF-κB activation. Mol Cell 2, 233–239.[CrossRef]
    [Google Scholar]
  5. Flamand, L., Romerio, F., Reitz, M. S. & Gallo, R. C. ( 1998; ). CD4 promoter transactivation by human herpesvirus 6. J Virol 72, 8797–8805.
    [Google Scholar]
  6. Gong, L., Millas, S., Maul, G. G. & Yeh, E. T. ( 2000; ). Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J Biol Chem 275, 3355–3359.[CrossRef]
    [Google Scholar]
  7. Gravel, A., Gosselin, J. & Flamand, L. ( 2002; ). Human herpesvirus 6 immediate-early 1 protein is a sumoylated nuclear phosphoprotein co-localizing with promyelocytic leukemia protein-associated nuclear bodies. J Biol Chem 277, 19679–19687.[CrossRef]
    [Google Scholar]
  8. Gravel, A., Tomoiu, A., Cloutier, N., Gosselin, J. & Flamand, L. ( 2003; ). Characterization of the immediate-early 2 protein of human herpesvirus 6, a promiscuous transcriptional activator. Virology 308, 340–353.[CrossRef]
    [Google Scholar]
  9. Hofmann, H., Floss, S. & Stamminger, T. ( 2000; ). Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J Virol 74, 2510–2524.[CrossRef]
    [Google Scholar]
  10. Johnson, E. S. & Blobel, G. ( 1997; ). Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272, 26799–26802.[CrossRef]
    [Google Scholar]
  11. Johnson, E. S. & Blobel, G. ( 1999; ). Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol 147, 981–994.[CrossRef]
    [Google Scholar]
  12. Johnson, E. S., Schwienhorst, I., Dohmen, R. J. & Blobel, G. ( 1997; ). The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16, 5509–5519.[CrossRef]
    [Google Scholar]
  13. Kamitani, T., Kito, K., Nguyen, H. P., Fukuda-Kamitani, T. & Yeh, E. T. ( 1998; ). Characterization of a second member of the sentrin family of ubiquitin-like proteins. J Biol Chem 273, 11349–11353.[CrossRef]
    [Google Scholar]
  14. Kim, K. I., Baek, S. H., Jeon, Y. J. & 7 other authors ( 2000; ). A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. J Biol Chem 275, 14102–14106.[CrossRef]
    [Google Scholar]
  15. Lapenta, V., Chiurazzi, P., van der Spek, P., Pizzuti, A., Hanaoka, F. & Brahe, C. ( 1997; ). SMT3A, a human homologue of the S. cerevisiae SMT3 gene, maps to chromosome 21qter and defines a novel gene family. Genomics 40, 362–366.[CrossRef]
    [Google Scholar]
  16. Li, S. J. & Hochstrasser, M. ( 1999; ). A new protease required for cell-cycle progression in yeast. Nature 398, 246–251.[CrossRef]
    [Google Scholar]
  17. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. ( 1997; ). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107.[CrossRef]
    [Google Scholar]
  18. Martin, M. E., Nicholas, J., Thomson, B. J., Newman, C. & Honess, R. W. ( 1991; ). Identification of a transactivating function mapping to the putative immediate-early locus of human herpesvirus 6. J Virol 65, 5381–5390.
    [Google Scholar]
  19. Matunis, M. J., Coutavas, E. & Blobel, G. ( 1996; ). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135, 1457–1470.[CrossRef]
    [Google Scholar]
  20. Muller, S. & Dejean, A. ( 1999; ). Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J Virol 73, 5137–5143.
    [Google Scholar]
  21. Muller, S., Matunis, M. J. & Dejean, A. ( 1998; ). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17, 61–70.[CrossRef]
    [Google Scholar]
  22. Nishida, T., Tanaka, H. & Yasuda, H. ( 2000; ). A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur J Biochem 267, 6423–6427.[CrossRef]
    [Google Scholar]
  23. Rodriguez, M. S., Dargemont, C. & Hay, R. T. ( 2001; ). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276, 12654–12659.[CrossRef]
    [Google Scholar]
  24. Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F. & Grosschedl, R. ( 2001; ). PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15, 3088–3103.[CrossRef]
    [Google Scholar]
  25. Saitoh, H. & Hinchey, J. ( 2000; ). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275, 6252–6258.[CrossRef]
    [Google Scholar]
  26. Spengler, M. L., Kurapatwinski, K., Black, A. R. & Azizkhan-Clifford, J. ( 2002; ). SUMO-1 modification of human cytomegalovirus IE1/IE72. J Virol 76, 2990–2996.[CrossRef]
    [Google Scholar]
  27. Stanton, R., Fox, J. D., Caswell, R., Sherratt, E. & Wilkinson, G. W. ( 2002; ). Analysis of the human herpesvirus-6 immediate-early 1 protein. J Gen Virol 83, 2811–2820.
    [Google Scholar]
  28. Sternsdorf, T., Jensen, K., Reich, B. & Will, H. ( 1999; ). The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J Biol Chem 274, 12555–12566.[CrossRef]
    [Google Scholar]
  29. Suzuki, T., Ichiyama, A., Saitoh, H., Kawakami, T., Omata, M., Chung, C. H., Kimura, M., Shimbara, N. & Tanaka, K. ( 1999; ). A new 30-kDa ubiquitin-related SUMO-1 hydrolase from bovine brain. J Biol Chem 274, 31131–31134.[CrossRef]
    [Google Scholar]
  30. Takahashi, Y., Kahyo, T., Toh, E. A., Yasuda, H. & Kikuchi, Y. ( 2001; ). Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J Biol Chem 276, 48973–48977.[CrossRef]
    [Google Scholar]
  31. Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H. & Hay, R. T. ( 2001; ). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276, 35368–35374.[CrossRef]
    [Google Scholar]
  32. Wu, J., Jupp, R., Stenberg, R. M., Nelson, J. A. & Ghazal, P. ( 1993; ). Site-specific inhibition of RNA polymerase II preinitiation complex assembly by human cytomegalovirus IE86 protein. J Virol 67, 7547–7555.
    [Google Scholar]
  33. Xu, Y., Ahn, J. H., Cheng, M., apRhys, C. M., Chiou, C. J., Zong, J., Matunis, M. J. & Hayward, G. S. ( 2001; ). Proteasome-independent disruption of PML oncogenic domains (PODs), but not covalent modification by SUMO-1, is required for human cytomegalovirus immediate-early protein IE1 to inhibit PML-mediated transcriptional repression. J Virol 75, 10683–10695.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19610-0
Loading
/content/journal/jgv/10.1099/vir.0.19610-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error