1887

Abstract

Porcine circovirus type 2 (PCV-2) has been identified as the causal agent of postweaning multisystemic wasting syndrome and has been associated with several other disease syndromes in pigs. To date, however, little is known regarding the mechanism(s) underlying the pathogenesis of PCV-2-induced diseases and the interaction of the virus with the host immune system. In the present study, oligodeoxynucleotides (ODNs), with central CpG motifs selected from the genome of PCV-2, were demonstrated to modulate the immune response of porcine PBMCs. Four of the five ODNs tested were demonstrated to act in a stimulatory manner via induction of IFN- production, whereas only one of the five ODNs showed inhibitory activity. Also, this inhibitory ODN was demonstrated to completely inhibit IFN- production induced by the other stimulatory ODNs and showed a variable degree of inhibitory action on other known inducers of IFN-. Although no single common characteristic among resistant or susceptible inducers could be identified, the presence of immune modulatory sequences in the genome of PCV-2 may represent an underlying mechanism of the pathogenesis of PCV-2-associated diseases.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19362-0
2003-11-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/11/vir842937.html?itemId=/content/journal/jgv/10.1099/vir.0.19362-0&mimeType=html&fmt=ahah

References

  1. Allan, G. M. & Ellis, J. A. ( 2000; ). Porcine circoviruses: a review. J Vet Diagn Invest 12, 3–14.[CrossRef]
    [Google Scholar]
  2. Allan, G. M., McNeilly, F., Cassidy, J. P., Reilly, G. A., Adair, B., Ellis, W. A. & McNulty, M. S. ( 1995; ). Pathogenesis of porcine circovirus; experimental infections of colostrum deprived piglets and examination of pig foetal material. Vet Microbiol 44, 49–64.[CrossRef]
    [Google Scholar]
  3. Allan, G. M., McNeilly, F., Kennedy, S., Daft, B., Clarke, E. G., Ellis, J. A., Haines, D. M., Meehan, B. M. & Adair, B. M. ( 1998; ). Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest 10, 3–10.[CrossRef]
    [Google Scholar]
  4. Allan, G. M., Kennedy, S., McNeilly, F., Foster, J. C., Ellis, J. A., Krakowka, S. J., Meehan, B. M. & Adair, B. M. ( 1999; ). Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol 121, 1–11.[CrossRef]
    [Google Scholar]
  5. Allan, G. M., McNeilly, E., Kennedy, S., Meehan, B., Moffett, D., Malone, F., Ellis, J. & Krakowka, S. ( 2000; ). PCV-2-associated PDNS in Northern Ireland in 1990. Porcine dermatitis and nephropathy syndrome. Vet Rec 146, 711–712.
    [Google Scholar]
  6. Artursson, K., Gobl, A., Lindersson, M., Johansson, M. & Alm, G. ( 1992; ). Molecular cloning of a gene encoding porcine interferon-β. J Interferon Res 12, 153–160.[CrossRef]
    [Google Scholar]
  7. Artursson, K., Lindersson, M., Varela, N., Scheynius, A. & Alm, G. V. ( 1995; ). Interferon-α production and tissue localization of interferon-α/β producing cells after intradermal administration of Aujeszky's disease virus-infected cells in pigs. Scand J Immunol 41, 121–129.[CrossRef]
    [Google Scholar]
  8. Choi, J., Stevenson, G. W., Kiupel, M., Harrach, B., Anothayanontha, L., Kanitz, C. L. & Mittal, S. K. ( 2002; ). Sequence analysis of old and new strains of porcine circovirus associated with congenital tremors in pigs and their comparison with strains involved with postweaning multisystemic wasting syndrome. Can J Vet Res 66, 217–224.
    [Google Scholar]
  9. Colonna, M., Krug, A. & Cella, M. ( 2002; ). Interferon-producing cells: on the front line in immune responses against pathogens. Curr Opin Immunol 14, 373–379.[CrossRef]
    [Google Scholar]
  10. Dalpke, A. H., Zimmermann, S., Albrecht, I. & Heeg, K. ( 2002; ). Phosphodiester CpG oligonucleotides as adjuvants: polyguanosine runs enhance cellular uptake and improve immunostimulative activity of phosphodiester CpG oligonucleotides in vitro and in vivo. Immunology 106, 102–112.[CrossRef]
    [Google Scholar]
  11. Domeika, K. ( 2003; ). Porcine immunoregulatory cytokines with special reference to their induction by CpG-containing DNA. In Department of Veterinary Microbiology, Section for Immunology. Uppsala: Swedish University of Agricultural Sciences.
  12. Ellis, J., Hassard, L., Clark, E. & 9 other authors ( 1998; ). Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. Can Vet J 39, 44–51.
    [Google Scholar]
  13. Harding, J. C., Clark, E. G., Strokappe, J. H., Willson, P. I. & Ellis, J. A. ( 1998; ). Postweaning multisystemic wasting syndrome: epidemiology and clinical presentation. Swine Health Prod 6, 249–254.
    [Google Scholar]
  14. Hartmann, G., Krug, A., Waller-Fontaine, K. & Endres, S. ( 1996; ). Oligodeoxynucleotides enhance lipopolysaccharide-stimulated synthesis of tumor necrosis factor: dependence on phosphorothioate modification and reversal by heparin. Mol Med 2, 429–438.
    [Google Scholar]
  15. Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F. & Lanzavecchia, A. ( 2001; ). Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31, 3388–3393.[CrossRef]
    [Google Scholar]
  16. Johansson, E., Domeika, K., Berg, M., Alm, G. V. & Fossum, C. ( 2003; ). Characterisation of porcine monocyte-derived dendritic cells according to their cytokine profile. Vet Immunol Immunopathol 91, 183–197.[CrossRef]
    [Google Scholar]
  17. Kamstrup, S., Verthelyi, D. & Klinman, D. M. ( 2001; ). Response of porcine peripheral blood mononuclear cells to CpG-containing oligodeoxynucleotides. Vet Microbiol 78, 353–362.[CrossRef]
    [Google Scholar]
  18. Karlin, S., Ladunga, I. & Blaisdell, B. E. ( 1994; ). Heterogeneity of genomes: measures and values. Proc Natl Acad Sci U S A 91, 12837–12841.[CrossRef]
    [Google Scholar]
  19. Kennedy, S., Moffett, D., McNeilly, F., Meehan, B., Ellis, J., Krakowka, S. & Allan, G. M. ( 2000; ). Reproduction of lesions of postweaning multisystemic wasting syndrome by infection of conventional pigs with porcine circovirus type 2 alone or in combination with porcine parvovirus. J Comp Pathol 122, 9–24.[CrossRef]
    [Google Scholar]
  20. Klinman, D. M., Takeshita, F., Gursel, I., Leifer, C., Ishii, K. J., Verthelyi, D. & Gursel, M. ( 2002; ). CpG DNA: recognition by and activation of monocytes. Microbes Infect 4, 897–901.[CrossRef]
    [Google Scholar]
  21. Krakowka, S., Ellis, J. A., Meehan, B., Kennedy, S., McNeilly, F. & Allan, G. ( 2000; ). Viral wasting syndrome of swine: experimental reproduction of postweaning multisystemic wasting syndrome in gnotobiotic swine by coinfection with porcine circovirus 2 and porcine parvovirus. Vet Pathol 37, 254–263.[CrossRef]
    [Google Scholar]
  22. Krakowka, S., Ellis, J. A., McNeilly, F., Ringler, S., Rings, D. M. & Allan, G. ( 2001; ). Activation of the immune system is the pivotal event in the production of wasting disease in pigs infected with porcine circovirus-2 (PCV-2). Vet Pathol 38, 31–42.[CrossRef]
    [Google Scholar]
  23. Krieg, A. M. ( 2002; ). CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20, 709–760.[CrossRef]
    [Google Scholar]
  24. Krieg, A. M., Wu, T., Weeratna, R., Efler, S. M., Love-Homan, L., Yang, L., Yi, A. K., Short, D. & Davis, H. L. ( 1998; ). Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci U S A 95, 12631–12636.[CrossRef]
    [Google Scholar]
  25. Krug, A., Rothenfusser, S., Hornung, V., Jahrsdorfer, B., Blackwell, S., Ballas, Z. K., Endres, S., Krieg, A. M. & Hartmann, G. ( 2001; ). Identification of CpG oligonucleotide sequences with high induction of IFN-α/β in plasmacytoid dendritic cells. Eur J Immunol 31, 2154–2163.[CrossRef]
    [Google Scholar]
  26. Le Bon, A. & Tough, D. F. ( 2002; ). Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 14, 432–436.[CrossRef]
    [Google Scholar]
  27. Magnusson, M., Johansson, E., Berg, M., Eloranta, M. L., Fuxler, L. & Fossum, C. ( 2001a; ). The plasmid pcDNA3 differentially induces production of interferon-α and interleukin-6 in cultures of porcine leukocytes. Vet Immunol Immunopathol 78, 45–56.[CrossRef]
    [Google Scholar]
  28. Magnusson, M., Magnusson, S., Vallin, H., Ronnblom, L. & Alm, G. V. ( 2001b; ). Importance of CpG dinucleotides in activation of natural IFN-α-producing cells by a lupus-related oligodeoxynucleotide. Scand J Immunol 54, 543–550.[CrossRef]
    [Google Scholar]
  29. Mankertz, A. & Hillenbrand, B. ( 2001; ). Replication of porcine circovirus type 1 requires two proteins encoded by the viral rep gene. Virology 279, 429–438.[CrossRef]
    [Google Scholar]
  30. Meehan, B. M., McNeilly, F., Todd, D. & 7 other authors ( 1998; ). Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J Gen Virol 79, 2171–2179.
    [Google Scholar]
  31. Mutwiri, G., Pontarollo, R., Babiuk, S. & 12 other authors ( 2003; ). Biological activity of immunostimulatory CpG DNA motifs in domestic animals. Vet Immunol Immunopathol 91, 89–103.[CrossRef]
    [Google Scholar]
  32. Nowacki, W. & Charley, B. ( 1993; ). Enrichment of coronavirus-induced interferon-producing blood leukocytes increases the interferon yield per cell: a study with pig leukocytes. Res Immunol 144, 111–120.[CrossRef]
    [Google Scholar]
  33. Nowacki, W., Cederblad, B., Renard, C., La Bonnardiere, C. & Charley, B. ( 1993; ). Age-related increase of porcine natural interferon α producing cell frequency and of interferon yield per cell. Vet Immunol Immunopathol 37, 113–122.[CrossRef]
    [Google Scholar]
  34. Peiser, L., Mukhopadhyay, S. & Gordon, S. ( 2002; ). Scavenger receptors in innate immunity. Curr Opin Immunol 14, 123–128.[CrossRef]
    [Google Scholar]
  35. Pisetsky, D. S. & Reich, C. F. ( 2000; ). Inhibition of murine macrophage IL-12 production by natural and synthetic DNA. Clin Immunol 96, 198–204.[CrossRef]
    [Google Scholar]
  36. Ragland, W. L., Novak, R., El-Attrache, J., Savic, V. & Ester, K. ( 2002; ). Chicken anemia virus and infectious bursal disease virus interfere with transcription of chicken IFN-α and IFN-γ mRNA. J Interferon Cytokine Res 22, 437–441.[CrossRef]
    [Google Scholar]
  37. Rosell, C., Segales, J., Ramos-Vara, J. A., Folch, J. M., Rodriguez-Arrioja, G. M., Duran, C. O., Balasch, M., Plana-Duran, J. & Domingo, M. ( 2000; ). Identification of porcine circovirus in tissues of pigs with porcine dermatitis and nephropathy syndrome. Vet Rec 146, 40–43.[CrossRef]
    [Google Scholar]
  38. Rosenberger, J. K. & Cloud, S. S. ( 1998; ). Chicken anemia virus. Poult Sci 77, 1190–1192.[CrossRef]
    [Google Scholar]
  39. Sandvik, T., Grierson, S., King, D., Spencer, Y., Banks, M. & Drew, T. ( 2001; ). Detection and genetic typing of porcine circovirus DNA isolated from archived paraffin embedded pig tissues. ssDNA Viruses of Plants, Birds, Pigs and Primates (Saint-Malo, France, 24–27 September 2001).
  40. Sato, Y., Roman, M., Tighe, H. & 7 other authors ( 1996; ). Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273, 352–354.[CrossRef]
    [Google Scholar]
  41. Sato, Y., Miyata, M., Sato, Y., Nishimaki, T., Kochi, H. & Kasukawa, R. ( 1999; ). CpG motif-containing DNA fragments from sera of patients with systemic lupus erythematosus proliferate mononuclear cells in vitro. J Rheumatol 26, 294–301.
    [Google Scholar]
  42. Stein, C. A., Subasinghe, C., Shinozuka, K. & Cohen, J. S. ( 1988; ). Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16, 3209–3221.[CrossRef]
    [Google Scholar]
  43. Stevenson, G. W., Kiupel, M., Mittal, S. K., Choi, J., Latimer, K. S. & Kanitz, C. L. ( 2001; ). Tissue distribution and genetic typing of porcine circoviruses in pigs with naturally occurring congenital tremors. J Vet Diagn Invest 13, 57–62.[CrossRef]
    [Google Scholar]
  44. Stunz, L. L., Lenert, P., Peckham, D., Yi, A. K., Haxhinasto, S., Chang, M., Krieg, A. M. & Ashman, R. F. ( 2002; ). Inhibitory oligonucleotides specifically block effects of stimulatory CpG oligonucleotides in B cells. Eur J Immunol 32, 1212–1222.[CrossRef]
    [Google Scholar]
  45. Sun, S., Beard, C., Jaenisch, R., Jones, P. & Sprent, J. ( 1997; ). Mitogenicity of DNA from different organisms for murine B cells. J Immunol 159, 3119–3125.
    [Google Scholar]
  46. Tighe, H., Corr, M., Roman, M. & Raz, E. ( 1998; ). Gene vaccination: plasmid DNA is more than just a blueprint. Immunol Today 19, 89–97.[CrossRef]
    [Google Scholar]
  47. Tischer, I., Rasch, R. & Tochtermann, G. ( 1974; ). Characterization of papovavirus- and picornavirus-like particles in permanent pig kidney cell lines. Zentralbl Bakteriol 226, 153–167.
    [Google Scholar]
  48. Tischer, I., Mields, W., Wolff, D., Vagt, M. & Griem, W. ( 1986; ). Studies on epidemiology and pathogenicity of porcine circovirus. Arch Virol 91, 271–276.[CrossRef]
    [Google Scholar]
  49. Vallin, H., Perers, A., Alm, G. V. & Ronnblom, L. ( 1999; ). Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-α inducer in systemic lupus erythematosus. J Immunol 163, 6306–6313.
    [Google Scholar]
  50. Verthelyi, D., Ishii, K. J., Gursel, M., Takeshita, F. & Klinman, D. M. ( 2001; ). Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol 166, 2372–2377.[CrossRef]
    [Google Scholar]
  51. Walker, I. W., Konoby, C. A., Jewhurst, V. A., McNair, I., McNeilly, F., Meehan, B. M., Cottrell, T. S., Ellis, J. A. & Allan, G. M. ( 2000; ). Development and application of a competitive enzyme-linked immunosorbent assay for the detection of serum antibodies to porcine circovirus type 2. J Vet Diagn Invest 12, 400–405.[CrossRef]
    [Google Scholar]
  52. Wattrang, E., McNeilly, F., Allan, G. M., Greko, C., Fossum, C. & Wallgren, P. ( 2002; ). Exudative epidermitis and porcine circovirus-2 infection in a Swedish SPF-herd. Vet Microbiol 86, 281–293.[CrossRef]
    [Google Scholar]
  53. Xu, Y. & Szoka, F. C., Jr ( 1996; ). Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35, 5616–5623.[CrossRef]
    [Google Scholar]
  54. Yamada, H., Gursel, I., Takeshita, F., Conover, J., Ishii, K. J., Gursel, M., Takeshita, S. & Klinman, D. M. ( 2002; ). Effect of suppressive DNA on CpG-induced immune activation. J Immunol 169, 5590–5594.[CrossRef]
    [Google Scholar]
  55. Yamamoto, S., Yamamoto, T., Shimada, S., Kuramoto, E., Yano, O., Kataoka, T. & Tokunaga, T. ( 1992; ). DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol Immunol 36, 983–997.[CrossRef]
    [Google Scholar]
  56. Zhao, H., Cheng, S. H. & Yew, N. S. ( 2000; ). Requirements for effective inhibition of immunostimulatory CpG motifs by neutralizing motifs. Antisense Nucleic Acid Drug Dev 10, 381–389.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19362-0
Loading
/content/journal/jgv/10.1099/vir.0.19362-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error