1887

Abstract

Influenza A virus is a major public health threat, killing more than 30 000 per year in the USA alone, sickening millions and inflicting substantial economic costs. Novel influenza virus strains emerge periodically to which humans have little immunity, resulting in devastating pandemics. The 1918 pandemic killed nearly 700 000 Americans and 40 million people worldwide. Pandemics in 1957 and 1968, while much less devastating than 1918, also caused tens of thousands of deaths in the USA. The influenza A virus is capable of enormous genetic variability, both by continuous, gradual mutation and by reassortment of gene segments between viruses. Both the 1957 and 1968 pandemic strains are thought to have originated as reassortants, in which one or both human-adapted viral surface proteins were replaced by proteins from avian influenza virus strains. Analyses of the surface proteins of the 1918 pandemic strain, however, suggest that this strain may have had a different origin. The haemagglutinin gene segment of the virus may have come directly from an avian source different from those currently circulating. Alternatively, the virus, or some of its gene segments, may have evolved in an intermediate host before emerging as a human pathogen. Determining whether pandemic influenza virus strains can emerge via different pathways will affect the scope and focus of surveillance and prevention efforts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19302-0
2003-09-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/9/vir842285.html?itemId=/content/journal/jgv/10.1099/vir.0.19302-0&mimeType=html&fmt=ahah

References

  1. Alexander, D. J. & Brown, I. H. ( 2000; ). Recent zoonoses caused by influenza A viruses. Rev Sci Tech 19, 197–225.
    [Google Scholar]
  2. Basler, C. F., Reid, A. H., Dybing, J. K. & 9 other authors ( 2001; ). Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc Natl Acad Sci U S A 98, 2746–2751.[CrossRef]
    [Google Scholar]
  3. Bean, W. J., Schell, M., Katz, J., Kawaoka, Y., Naeve, C., Gorman, O. & Webster, R. G. ( 1992; ). Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. J Virol 66, 1129–1138.
    [Google Scholar]
  4. Beveridge, W. ( 1977; ). Influenza: the Last Great Plague, an Unfinished Story of Discovery. New York: Prodist.
  5. Brammer, T. L., Murray, E. L., Fukuda, K., Hall, H. E., Klimov, A. & Cox, N. J. ( 2002; ). Surveillance for influenza: United States, 1997–98, 1998–99, and 1999–00 seasons. MMWR Surveill Summ 51, 1–10.
    [Google Scholar]
  6. Brown, I. H., Ludwig, S., Olsen, C. W. & 7 other authors ( 1997; ). Antigenic and genetic analyses of H1N1 influenza A viruses from European pigs. J Gen Virol 78, 553–562.
    [Google Scholar]
  7. Brown, I. H., Harris, P. A., McCauley, J. W. & Alexander, D. J. ( 1998; ). Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J Gen Virol 79, 2947–2955.
    [Google Scholar]
  8. Brownlee, G. G. & Fodor, E. ( 2001; ). The predicted antigenicity of the haemagglutinin of the 1918 Spanish influenza pandemic suggests an avian origin. Philos Trans R Soc Lond B Biol Sci 356, 1871–1876.[CrossRef]
    [Google Scholar]
  9. Castrucci, M. R., Donatelli, I., Sidoli, L., Barigazzi, G., Kawaoka, Y. & Webster, R. G. ( 1993; ). Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 193, 503–506.[CrossRef]
    [Google Scholar]
  10. Chun, J. ( 1919; ). Influenza including its infection among pigs. Natl Med J China (Peking) 5, 34–44.
    [Google Scholar]
  11. Claas, E. C., Kawaoka, Y., de Jong, J. C., Masurel, N. & Webster, R. G. ( 1994; ). Infection of children with avian–human reassortant influenza virus from pigs in Europe. Virology 204, 453–457.[CrossRef]
    [Google Scholar]
  12. Claas, E. C., Osterhaus, A. D., van Beek, R., De Jong, J. C., Rimmelzwaan, G. F., Senne, D. A., Krauss, S., Shortridge, K. F. & Webster, R. G. ( 1998; ). Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472–477.[CrossRef]
    [Google Scholar]
  13. Cox, N. J. & Subbarao, K. ( 2000; ). Global epidemiology of influenza: past and present. Annu Rev Med 51, 407–421.[CrossRef]
    [Google Scholar]
  14. Dimoch, W. W. ( 1918; ). Diseases of swine. J Am Vet Med Assoc 54, 321–340.
    [Google Scholar]
  15. Dorset, M., McBryde, C. N. & Niles, W. B. ( 1922; ). Remarks on ‘hog’ flu. J Am Vet Med Assoc 62, 162–171.
    [Google Scholar]
  16. Fang, R., Min Jou, W., Huylebroeck, D., Devos, R. & Fiers, W. ( 1981; ). Complete structure of A/duck/Ukraine/63 influenza hemagglutinin gene: animal virus as progenitor of human H3 Hong Kong 1968 influenza hemagglutinin. Cell 25, 315–323.[CrossRef]
    [Google Scholar]
  17. Fanning, T. G., Slemons, R. D., Reid, A. H., Janczewski, T. A., Dean, J. & Taubenberger, J. K. ( 2002; ). 1917 avian influenza virus sequences suggest that the 1918 pandemic virus did not acquire its hemagglutinin directly from birds. J Virol 76, 7860–7862.[CrossRef]
    [Google Scholar]
  18. Gaydos, J., Hodder, R., Top, F. J., Soden, V., Allen, R., Bartley, J., Zabkar, J., Nowosiwsky, T. & Russell, P. ( 1977; ). Swine influenza A at Fort Dix, New Jersey (January–February 1976). I. Case finding and clinical study of cases. J Infect Dis 136, 356–362.[CrossRef]
    [Google Scholar]
  19. Hatta, M. & Kawaoka, Y. ( 2002; ). The continued pandemic threat posed by avian influenza viruses in Hong Kong. Trends Microbiol 10, 340–344.[CrossRef]
    [Google Scholar]
  20. Jordan, E. ( 1927; ). Epidemic Influenza: a Survey, pp. 355. Chicago: American Medical Association.
  21. Katz, J. M., Lim, W., Bridges, C. B. & 13 other authors ( 1999; ). Antibody response in individuals infected with avian influenza A (H5N1) viruses and detection of anti-H5 antibody among household and social contacts. J Infect Dis 180, 1763–1770.[CrossRef]
    [Google Scholar]
  22. Kawaoka, Y., Krauss, S. & Webster, R. G. ( 1989; ). Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol 63, 4603–4608.
    [Google Scholar]
  23. Kilbourne, E. D. ( 1977; ). Influenza pandemics in perspective. JAMA 237, 1225–1228.[CrossRef]
    [Google Scholar]
  24. Kilbourne, E. D. ( 1997; ). Perspectives on pandemics: a research agenda. J Infect Dis 176 (Suppl. 1), S29–S31.[CrossRef]
    [Google Scholar]
  25. Koen, J. S. ( 1919; ). A practical method for field diagnoses of swine diseases. Am J Vet Med 14, 468–470.
    [Google Scholar]
  26. Kupradinun, S., Peanpijit, P., Bhodhikosoom, C., Yoshioka, Y., Endo, A. & Nerome, K. ( 1991; ). The first isolation of swine H1N1 influenza viruses from pigs in Thailand. Arch Virol 118, 289–297.[CrossRef]
    [Google Scholar]
  27. Lamb, R. & Krug, R. ( 2001; ). Orthomyxoviridae: The viruses and their replication. In Fields Virology, 4th edn, pp. 1487–1531. Edited by D. Knipe & P. Howley. Philadelphia: Lippincott Williams & Wilkins.
  28. Layne, S. P., Beugelsdijk, T. J., Patel, C. K., Taubenberger, J. K., Cox, N. J., Gust, I. D., Hay, A. J., Tashiro, M. & Lavanchy, D. ( 2001; ). A global lab against influenza. Science 293, 1729.[CrossRef]
    [Google Scholar]
  29. Lin, Y. P., Shaw, M., Gregory, V. & 10 other authors ( 2000; ). Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci U S A 97, 9654–9658.[CrossRef]
    [Google Scholar]
  30. Linder, F. E. & Grove, R. D. ( 1943; ). Vital Statistics Rates in the United States: 1900–1940. Washington, DC: Government Printing Office.
  31. Ludwig, S., Stitz, L., Planz, O., Van, H., Fitch, W. & Scholtissek, C. ( 1995; ). European swine virus as a possible source for the next influenza pandemic? Virology 212, 555–561.[CrossRef]
    [Google Scholar]
  32. Marks, G. & Beatty, W. K. ( 1976; ). Epidemics. New York: Scribner.
  33. Marozin, S., Gregory, V., Cameron, K. & 7 other authors ( 2002; ). Antigenic and genetic diversity among swine influenza A H1N1 and H1N2 viruses in Europe. J Gen Virol 83, 735–745.
    [Google Scholar]
  34. Martinez, C., del Rio, L., Portela, A., Domingo, E. & Ortín, J. ( 1983; ). Evolution of the influenza virus neuraminidase gene during drift of the N2 subtype. Virology 130, 539–545.[CrossRef]
    [Google Scholar]
  35. Matrosovich, M. N., Gambaryan, A. S., Teneberg, S., Piskarev, V. E., Yamnikova, S. S., Lvov, D. K., Robertson, J. S. & Karlsson, K. A. ( 1997; ). Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233, 224–234.[CrossRef]
    [Google Scholar]
  36. Meltzer, M. I., Cox, N. J. & Fukuda, K. ( 1999; ). The economic impact of pandemic influenza in the United States: priorities for intervention. Emerg Infect Dis 5, 659–671.[CrossRef]
    [Google Scholar]
  37. Murray, C. & Biester, H. E. ( 1930; ). Swine influenza. J Am Vet Med Assoc 76, 349–355.
    [Google Scholar]
  38. Nakajima, K., Desselberger, U. & Palese, P. ( 1978; ). Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature 274, 334–339.[CrossRef]
    [Google Scholar]
  39. Nerome, K., Ishida, M., Oya, A. & Oda, K. ( 1982; ). The possible origin H1N1 (Hsw1N1) virus in the swine population of Japan and antigenic analysis of the isolates. J Gen Virol 62, 171–175.[CrossRef]
    [Google Scholar]
  40. Olsen, C. W. ( 2002; ). The emergence of novel swine influenza viruses in North America. Virus Res 85, 199–210.[CrossRef]
    [Google Scholar]
  41. Palese, P. & Young, J. F. ( 1982; ). Variation of influenza A, B, and C viruses. Science 215, 1468–1474.[CrossRef]
    [Google Scholar]
  42. ProMED Mail ( 2003; ). Avian influenza: Netherlands. ProMED Mail. Archive no. 20030306. 0552.
    [Google Scholar]
  43. Reid, A. H., Fanning, T. G., Hultin, J. V. & Taubenberger, J. K. ( 1999; ). Origin and evolution of the 1918 ‘Spanish’ influenza virus hemagglutinin gene. Proc Natl Acad Sci U S A 96, 1651–1656.[CrossRef]
    [Google Scholar]
  44. Reid, A. H., Fanning, T. G., Janczewski, T. A. & Taubenberger, J. K. ( 2000; ). Characterization of the 1918 ‘Spanish’ influenza virus neuraminidase gene. Proc Natl Acad Sci U S A 97, 6785–6790.[CrossRef]
    [Google Scholar]
  45. Reid, A. H., Fanning, T. G., Janczewski, T. A., McCall, S. & Taubenberger, J. K. ( 2002; ). Characterization of the 1918 ‘Spanish’ influenza virus matrix gene segment. J Virol 76, 10717–10723.[CrossRef]
    [Google Scholar]
  46. Reid, A. H., Janczewski, T. A., Lourens, R. A., Elliot, A. J., Daniels, R. S., Berry, C. L., Oxford, J. S. & Taubenberger, J. K. ( 2003; ). 1918 influenza pandemic caused by highly conserved viruses with two receptor-binding variants. Emerg Infect Dis (in press)
    [Google Scholar]
  47. Rimmelzwaan, G. F., de Jong, J. C., Bestebroer, T. M., van Loon, A. M., Claas, E. C., Fouchier, R. A. & Osterhaus, A. D. ( 2001; ). Antigenic and genetic characterization of swine influenza A (H1N1) viruses isolated from pneumonia patients in The Netherlands. Virology 282, 301–306.[CrossRef]
    [Google Scholar]
  48. Rosenau, M. J. & Last, J. M. ( 1980; ). Maxcy-Rosenau Preventative Medicine and Public Health. New York: Appleton-Century-Crofts.
  49. Schafer, J. R., Kawaoka, Y., Bean, W. J., Suss, J., Senne, D. & Webster, R. G. ( 1993; ). Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir. Virology 194, 781–788.[CrossRef]
    [Google Scholar]
  50. Scholtissek, C. ( 1995; ). Molecular evolution of influenza viruses. Virus Genes 11, 209–215.[CrossRef]
    [Google Scholar]
  51. Scholtissek, C., Koennecke, I. & Rott, R. ( 1978a; ). Host range recombinants of fowl plague (influenza A) virus. Virology 91, 79–85.[CrossRef]
    [Google Scholar]
  52. Scholtissek, C., Rohde, W., Von Hoyningen, V. & Rott, R. ( 1978b; ). On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87, 13–20.[CrossRef]
    [Google Scholar]
  53. Shope, R. E. ( 1936; ). The incidence of neutralizing antibodies for swine influenza virus in the sera of human beings of different ages. J Exp Med 63, 669–684.[CrossRef]
    [Google Scholar]
  54. Shope, R. E. & Lewis, P. A. ( 1931; ). Swine influenza. J Exp Med 54, 349–359.[CrossRef]
    [Google Scholar]
  55. Simonsen, L., Clarke, M. J., Schonberger, L. B., Arden, N. H., Cox, N. J. & Fukuda, K. ( 1998; ). Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J Infect Dis 178, 53–60.[CrossRef]
    [Google Scholar]
  56. Simonsen, L., Fukuda, K., Schonberger, L. B. & Cox, N. J. ( 2000; ). The impact of influenza epidemics on hospitalizations. J Infect Dis 181, 831–837.[CrossRef]
    [Google Scholar]
  57. Smith, W., Andrewes, C. & Laidlaw, P. ( 1933; ). A virus obtained from influenza patients. Lancet 225, 66–68.
    [Google Scholar]
  58. Subbarao, K., Klimov, A., Katz, J. & 13 other authors ( 1998; ). Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279, 393–396.[CrossRef]
    [Google Scholar]
  59. Taubenberger, J. K. & Layne, S. P. ( 2001; ). Diagnosis of influenza virus: coming to grips with the molecular era. Mol Diagn 6, 291–305.[CrossRef]
    [Google Scholar]
  60. Taubenberger, J. K., Reid, A. H., Krafft, A. E., Bijwaard, K. E. & Fanning, T. G. ( 1997; ). Initial genetic characterization of the 1918 ‘Spanish’ influenza virus. Science 275, 1793–1796.[CrossRef]
    [Google Scholar]
  61. Taubenberger, J. K., Reid, A. H., Janczewski, T. A. & Fanning, T. G. ( 2001; ). Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Philos Trans R Soc Lond B Biol Sci 356, 1829–1839.[CrossRef]
    [Google Scholar]
  62. Thompson, W. W., Shay, D. K., Weintraub, E., Brammer, L., Cox, N., Anderson, L. J. & Fukuda, K. ( 2003; ). Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289, 179–186.[CrossRef]
    [Google Scholar]
  63. Tsuchiya, E., Sugawara, K., Hongo, S., Matsuzaki, Y., Muraki, Y., Li, Z. N. & Nakamura, K. ( 2001; ). Antigenic structure of the haemagglutinin of human influenza A/H2N2 virus. J Gen Virol 82, 2475–2484.
    [Google Scholar]
  64. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. ( 1992; ). Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152–179.
    [Google Scholar]
  65. Webster, R. G., Sharp, G. B. & Claas, E. C. ( 1995; ). Interspecies transmission of influenza viruses. Am J Respir Crit Care Med 152, 25–30.[CrossRef]
    [Google Scholar]
  66. Wiley, D. C., Wilson, I. A. & Skehel, J. J. ( 1981; ). Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289, 373–378.[CrossRef]
    [Google Scholar]
  67. Winter, G., Fields, S. & Brownlee, G. G. ( 1981; ). Nucleotide sequence of the haemagglutinin gene of a human influenza virus H1 subtype. Nature 292, 72–75.[CrossRef]
    [Google Scholar]
  68. Winternitz, M. C., Wason, I. M. & McNamara, F. P. ( 1920; ). The Pathology of Influenza. New Haven: Yale University Press.
  69. Wolbach, S. B. ( 1919; ). Comments on the pathology and bacteriology of fatal influenza cases, as observed at Camp Devens, Mass. Johns Hopkins Hospital Bull 30, 104–109.
    [Google Scholar]
  70. Woods, G. T., Schnurrenberger, P. R., Martin, R. J. & Tompkins, W. A. ( 1981; ). Swine influenza virus in swine and man in Illinois. J Occup Med 23, 263–267.
    [Google Scholar]
  71. Wright, P. & Webster, R. ( 2001; ). Orthomyxoviruses. In Fields Virology, 4th edn, pp. 1533–1579. Edited by D. Knipe & P. Howley. Philadelphia: Lippincott Williams & Wilkins.
  72. Young, J. F. & Palese, P. ( 1979; ). Evolution of human influenza A viruses in nature: recombination contributes to genetic variation of H1N1 strains. Proc Natl Acad Sci U S A 76, 6547–6551.[CrossRef]
    [Google Scholar]
  73. Zhou, N. N., Senne, D. A., Landgraf, J. S. & 7 other authors ( 2000; ). Emergence of H3N2 reassortant influenza A viruses in North American pigs. Vet Microbiol 74, 47–58.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19302-0
Loading
/content/journal/jgv/10.1099/vir.0.19302-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error