1887

Abstract

MHC-I-restricted cytotoxic responses are considered a critical component of protective immunity against viruses, including human immunodeficiency virus type 1 (HIV-1). CTLs directed against accessory and early regulatory HIV-1 proteins might be particularly effective; however, CTL epitopes in these proteins are rarely found. Novel artificial neural networks (ANNs) were used to quantitatively predict HLA-A2-binding CTL epitope peptides from publicly available full-length HIV-1 protein sequences. Epitopes were selected based on their novelty, predicted HLA-A2-binding affinity and conservation among HIV-1 strains. HLA-A2 binding was validated experimentally and binders were tested for their ability to induce CTL and IFN- responses. About 69 % were immunogenic in HLA-A2 transgenic mice and 61 % were recognized by CD8 T-cells from 17 HLA-A2 HIV-1-positive patients. Thus, 31 novel conserved CTL epitopes were identified in eight HIV-1 proteins, including the first HLA-A2 minimal epitopes ever reported in the accessory and regulatory proteins Vif, Vpu and Rev. Interestingly, intermediate-binding peptides of low or no immunogenicity (i.e. subdominant epitopes) were found to be antigenic and more conserved. Such epitope peptides were anchor-optimized to improve immunogenicity and further increase the number of potential vaccine epitopes. About 67 % of anchor-optimized vaccine epitopes induced immune responses against the corresponding non-immunogenic naturally occurring epitopes. This study demonstrates the potency of ANNs for identifying putative virus CTL epitopes, and the new HIV-1 CTL epitopes identified should have significant implications for HIV-1 vaccine development. As a novel vaccine approach, it is proposed to increase the coverage of HIV variants by including multiple anchor-optimized variants of the more conserved subdominant epitopes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19152-0
2003-09-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/9/vir842409.html?itemId=/content/journal/jgv/10.1099/vir.0.19152-0&mimeType=html&fmt=ahah

References

  1. Addo, M. M., Altfeld, M., Rosenberg, E. S. & 9 other authors ( 2001; ). The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocytes derived from HIV-1-infected individuals. Proc Natl Acad Sci U S A 98, 1781–1786.[CrossRef]
    [Google Scholar]
  2. Addo, M. M., Altfeld, M., Rathod, A., Yu, M., Yu, X. G., Goulder, P. J., Rosenberg, E. S. & Walker, B. D. ( 2002; ). HIV-1 Vpu represents a minor target for cytotoxic T lymphocytes in HIV-1-infection. AIDS 16, 1071–1073.[CrossRef]
    [Google Scholar]
  3. Altfeld, M. A., Addo, M. M., Eldridge, R. L. & 12 other authors ( 2001a; ). Vpr is preferentially targeted by CTL during HIV-1 infection. J Immunol 167, 2743–2752.[CrossRef]
    [Google Scholar]
  4. Altfeld, M. A., Livingston, B., Reshamwala, N. & 20 other authors ( 2001b; ). Identification of novel HLA-A2-restricted human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte epitopes predicted by the HLA-A2 supertype peptide-binding motif. J Virol 75, 1301–1311.[CrossRef]
    [Google Scholar]
  5. Andersen, M. H., Tan, L., Sondergaard, I., Zeuthen, J., Elliott, T. & Haurum, J. S. ( 2000; ). Poor correspondence between predicted and experimental binding of peptides to class I MHC molecules. Tissue Antigens 55, 519–531.[CrossRef]
    [Google Scholar]
  6. Berzofsky, J. A. ( 1993; ). Epitope selection and design of synthetic vaccines. Molecular approaches to enhancing immunogenicity and cross-reactivity of engineered vaccines. Ann N Y Acad Sci 690, 256–264.[CrossRef]
    [Google Scholar]
  7. Berzofsky, J. A., Ahlers, J. D., Derby, M. A., Pendleton, C. D., Arichi, T. & Belyakov, I. M. ( 1999; ). Approaches to improve engineered vaccines for human immunodeficiency virus and other viruses that cause chronic infections. Immunol Rev 170, 151–172.[CrossRef]
    [Google Scholar]
  8. Borrow, P., Lewicki, H., Hahn, B. H., Shaw, G. M. & Oldstone, M. B. ( 1994; ). Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 68, 6103–6110.
    [Google Scholar]
  9. Buus, S., Stryhn, A., Winther, K., Kirkby, N. & Pedersen, L. O. ( 1995; ). Receptor-ligand interactions measured by an improved spun column chromatography technique. A high efficiency and high throughput size separation method. Biochim Biophys Acta 1243, 453–460.[CrossRef]
    [Google Scholar]
  10. Buus, S., Lauemoller, S. L., Worning, P. & 7 other authors ( 2003; ). Sensitive quantitative predictions of peptide-MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue Antigens (in press).
    [Google Scholar]
  11. Carmichael, A., Jin, X., Sissons, P. & Borysiewicz, L. ( 1993; ). Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: differential CTL responses to HIV-1 and Epstein–Barr virus in late disease. J Exp Med 177, 249–256.[CrossRef]
    [Google Scholar]
  12. Chouquet, C., Autran, B., Gomard, E., Bouley, J. M., Calvez, V., Katlama, C., Costagliola, D. & Riviere, Y. ( 2002; ). Correlation between breadth of memory HIV-specific cytotoxic T cells, viral load and disease progression in HIV infection. AIDS 16, 2399–2407.[CrossRef]
    [Google Scholar]
  13. Epstein, H., Hardy, R., May, J. S., Johnson, M. H. & Holmes, N. ( 1989; ). Expression and function of HLA-A2.1 in transgenic mice. Eur J Immunol 19, 1575–1583.[CrossRef]
    [Google Scholar]
  14. Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. & Rammensee, H. G. ( 1991; ). Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296.[CrossRef]
    [Google Scholar]
  15. Feltkamp, M. C., Vreugdenhil, G. R., Vierboom, M. P., Ras, E., van der Burg, S. H., ter Schegget, J., Melief, C. J. & Kast, W. M. ( 1995; ). Cytotoxic T lymphocytes raised against a subdominant epitope offered as a synthetic peptide eradicate human papillomavirus type 16-induced tumors. Eur J Immunol 25, 2638–2642.[CrossRef]
    [Google Scholar]
  16. Firat, H., Tourdot, S., Ureta-Vidal, A. & 8 other authors ( 2001; ). Design of a polyepitope construct for the induction of HLA-A0201-restricted HIV 1-specific CTL responses using HLA-A*0201 transgenic, H-2 class I KO mice. Eur J Immunol 31, 3064–3074.[CrossRef]
    [Google Scholar]
  17. Gegin, C. & Lehmann-Grube, F. ( 1992; ). Control of acute infection with lymphocytic choriomeningitis virus in mice that cannot present an immunodominant viral cytotoxic T lymphocyte epitope. J Immunol 149, 3331–3338.
    [Google Scholar]
  18. Gulukota, K., Sidney, J., Sette, A. & DeLisi, C. ( 1997; ). Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J Mol Biol 267, 1258–1267.[CrossRef]
    [Google Scholar]
  19. Hanke, T. & McMichael, A. J. ( 2000; ). Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med 6, 951–955.[CrossRef]
    [Google Scholar]
  20. Human Retroviruses & AIDS ( 1998; ). A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. Los Alamos National Laboratory, New Mexico: Theoretical Biology and Biophysics Group.
  21. Hunziker, I. P., Cerny, A. & Pichler, W. J. ( 1998; ). Who is right? Or, how to judge the disagreement about HLA restriction of Nef peptides. AIDS Res Hum Retroviruses 14, 921–924.[CrossRef]
    [Google Scholar]
  22. Kast, W. M., Brandt, R. M., Sidney, J., Drijfhout, J. W., Kubo, R. T., Grey, H. M., Melief, C. J. & Sette, A. ( 1994; ). Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J Immunol 152, 3904–3912.
    [Google Scholar]
  23. Kaul, R., Dong, T., Plummer, F. A. & 12 other authors ( 2001; ). CD8+ lymphocytes respond to different HIV epitopes in seronegative and infected subjects. J Clin Invest 107, 1303–1310.[CrossRef]
    [Google Scholar]
  24. Kern, F., Surel, I. P., Brock, C. & 9 other authors ( 1998; ). T-cell epitope mapping by flow cytometry. Nat Med 4, 975–978.[CrossRef]
    [Google Scholar]
  25. Klein, M. R., van Baalen, C. A., Holwerda, A. M. & 7 other authors ( 1995; ). Kinetics of Gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: a longitudinal analysis of rapid progressors and long-term asymptomatics. J Exp Med 181, 1365–1372.[CrossRef]
    [Google Scholar]
  26. Korber, B., Brander, C., Haynes, B., Koup, R., Kuiken, C., Moore, J. P., Walker, B. D. & Watkins, D. I. (editors) ( 2000; ). HIV Molecular Immunology. Los Alamos National Laboratory, New Mexico: Theoretical Biology and Biophysics.
  27. Koup, R. A., Safrit, J. T., Cao, Y., Andrews, C. A., McLeod, G., Borkowsky, W., Farthing, C. & Ho, D. D. ( 1994; ). Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 68, 4650–4655.
    [Google Scholar]
  28. McMichael, A. J. & Rowland-Jones, S. L. ( 2001; ). Cellular immune responses to HIV. Nature 410, 980–987.[CrossRef]
    [Google Scholar]
  29. Milik, M., Sauer, D., Brunmark, A. P., Yuan, L., Vitiello, A., Jackson, M. R., Peterson, P. A., Skolnick, J. & Glass, C. A. ( 1998; ). Application of an artificial neural network to predict specific class I MHC binding peptide sequences. Nat Biotechnol 16, 753–756.[CrossRef]
    [Google Scholar]
  30. Nielsen, H. V., Lauemoller, S. L., Christiansen, L., Buus, S., Fomsgaard, A. & Petersen, E. ( 1999; ). Complete protection against lethal Toxoplasma gondii infection in mice immunized with a plasmid encoding the SAG1 gene. Infect Immun 67, 6358–6363.
    [Google Scholar]
  31. Novitsky, V., Rybak, N., McLane, M. F. & 13 other authors ( 2001; ). Identification of human immunodeficiency virus type 1 subtype C Gag-, Tat-, Rev-, and Nef-specific ELISPOT-based cytotoxic T-lymphocyte responses for AIDS vaccine design. J Virol 75, 9210–9228.[CrossRef]
    [Google Scholar]
  32. Pantaleo, G., Demarest, J. F., Schacker, T. & 14 other authors ( 1997; ). The qualitative nature of the primary immune response to HIV infection is a prognosticator of disease progression independent of the initial level of plasma viremia. Proc Natl Acad Sci U S A 94, 254–258.[CrossRef]
    [Google Scholar]
  33. Pascolo, S., Bervas, N., Ure, J. M., Smith, A. G., Lemonnier, F. A. & Perarnau, B. ( 1997; ). HLA-A2.1-restricted education and cytolytic activity of CD8+ T lymphocytes from β2 microglobulin (β2m) HLA-A2.1 monochain transgenic H-2Db β2m double knockout mice. J Exp Med 185, 2043–2051.[CrossRef]
    [Google Scholar]
  34. Rammensee, H. G., Friede, T. & Stevanoviic, S. ( 1995; ). MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178–228.[CrossRef]
    [Google Scholar]
  35. Rodriguez, F., Slifka, M. K., Harkins, S. & Whitton, J. L. ( 2001; ). Two overlapping subdominant epitopes identified by DNA immunization induce protective CD8+ T-cell populations with differing cytolytic activities. J Virol 75, 7399–7409.[CrossRef]
    [Google Scholar]
  36. Rowland-Jones, S. L., Nixon, D. F., Aldhous, M. C., Gotch, F., Ariyoshi, K., Hallam, N., Kroll, J. S., Froebel, K. & McMichael, A. ( 1993; ). HIV-specific cytotoxic T-cell activity in an HIV-exposed but uninfected infant. Lancet 341, 860–861.[CrossRef]
    [Google Scholar]
  37. Rowland-Jones, S., Sutton, J., Ariyoshi, K. & 8 other authors ( 1995; ). HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nat Med 1, 59–64.[CrossRef]
    [Google Scholar]
  38. Rowland-Jones, S. L., Pinheiro, S., Kaul, R. & 9 other authors ( 2001; ). How important is the ‘quality’ of the cytotoxic T lymphocyte (CTL) response in protection against HIV infection? Immunol Lett 79, 15–20.[CrossRef]
    [Google Scholar]
  39. Santra, S., Barouch, D. H., Kuroda, M. J. & 9 other authors ( 2002; ). Prior vaccination increases the epitopic breadth of the cytotoxic T-lymphocyte response that evolves in rhesus monkeys following a simian-human immunodeficiency virus infection. J Virol 76, 6376–6381.[CrossRef]
    [Google Scholar]
  40. Schafer, J. R., Jesdale, B. M., George, J. A., Kouttab, N. M. & De Groot, A. S. ( 1998; ). Prediction of well-conserved HIV-1 ligands using a matrix-based algorithm, EpiMatrix. Vaccine 16, 1880–1884.[CrossRef]
    [Google Scholar]
  41. Seder, R. A. & Hill, A. V. ( 2000; ). Vaccines against intracellular infections requiring cellular immunity. Nature 406, 793–798.[CrossRef]
    [Google Scholar]
  42. Sette, A., Buus, S., Appella, E., Smith, J. A., Chesnut, R., Miles, C., Colon, S. M. & Grey, H. M. ( 1989; ). Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci U S A 86, 3296–3300.[CrossRef]
    [Google Scholar]
  43. Sette, A., Vitiello, A., Reherman, B. & 8 other authors ( 1994; ). The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 153, 5586–5592.
    [Google Scholar]
  44. Shirai, M., Arichi, T., Nishioka, M., Nomura, T., Ikeda, K., Kawanishi, K., Engelhard, V. H., Feinstone, S. M. & Berzofsky, J. A. ( 1995; ). CTL responses of HLA-A2.1-transgenic mice specific for hepatitis C viral peptides predict epitopes for CTL of humans carrying HLA-A2.1. J Immunol 154, 2733–2742.
    [Google Scholar]
  45. Stryhn, A., Pedersen, L. O., Romme, T., Holm, C. B., Holm, A. & Buus, S. ( 1996; ). Peptide binding specificity of major histocompatibility complex class I resolved into an array of apparently independent subspecificities: quantitation by peptide libraries and improved prediction of binding. Eur J Immunol 26, 1911–1918.[CrossRef]
    [Google Scholar]
  46. van der Most, R. G., Concepcion, R. J., Oseroff, C., Alexander, J., Southwood, S., Sidney, J., Chesnut, R. W., Ahmed, R. & Sette, A. ( 1997; ). Uncovering subdominant cytotoxic T-lymphocyte responses in lymphocytic choriomeningitis virus-infected BALB/c mice. J Virol 71, 5110–5114.
    [Google Scholar]
  47. Walker, B. D. & Korber, B. T. ( 2001; ). Immune control of HIV: the obstacles of HLA and viral diversity. Nat Immunol 2, 473–475.[CrossRef]
    [Google Scholar]
  48. Wentworth, P. A., Vitiello, A., Sidney, J., Keogh, E., Chesnut, R. W., Grey, H. & Sette, A. ( 1996; ). Differences and similarities in the A2.1-restricted cytotoxic T cell repertoire in humans and human leukocyte antigen-transgenic mice. Eur J Immunol 26, 97–101.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19152-0
Loading
/content/journal/jgv/10.1099/vir.0.19152-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error