1887

Abstract

The human gammaherpesviruses Epstein–Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) both infect lymphoid and epithelial cells and both are implicated in the development of cancer. The two viruses establish latency in B-lymphoid cells that, once disrupted, leads to a burst of virus replication during the lytic cycle. A basic leucine zipper (bZIP) transcription factor encoded by EBV, Zta (also known as BZLF1 and ZEBRA), is key to the disruption of EBV latency. KSHV encodes a related protein, K-bZIP (also known as RAP and K8). Recent developments in our understanding of the structures and functions of these two viral bZIP proteins have led to the conclusion that they are not homologues. Two important features of Zta are its ability to interact directly with DNA and to induce EBV replication whereas K-bZIP is not known to interact directly with DNA or to induce KSHV replication. Despite these differences, the ability to disrupt cell cycle control is conserved in both Zta and K-bZIP. The interactions of Zta and K-bZIP with cellular genes will be reviewed here.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19112-0
2003-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/8/vir841941.html?itemId=/content/journal/jgv/10.1099/vir.0.19112-0&mimeType=html&fmt=ahah

References

  1. Adamson, A. L. & Kenney, S. C. ( 1998; ). Rescue of the Epstein–Barr virus BZLF1 mutant, Z(S186A), early gene activation defect by the BRLF1 gene product. Virology 251, 187–197.[CrossRef]
    [Google Scholar]
  2. Adamson, A. L. & Kenney, S. ( 1999; ). The Epstein–Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Virol 73, 6551–6558.
    [Google Scholar]
  3. Adamson, A. L. & Kenney, S. ( 2001; ). Epstein–Barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 75, 2388–2399.[CrossRef]
    [Google Scholar]
  4. Aho, S., Buisson, M., Pajunen, T., Ryoo, Y. W., Giot, J. F., Gruffat, H., Sergeant, A. & Uitto, J. ( 2000; ). Ubinuclein, a novel nuclear protein interacting with cellular and viral transcription factors. J Cell Biol 148, 1165–1176.[CrossRef]
    [Google Scholar]
  5. AuCoin, D. P., Colletti, K. S., Xu, Y., Cei, S. A. & Pari, G. S. ( 2002; ). Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains two functional lytic origins of DNA replication. J Virol 76, 7890–7896.[CrossRef]
    [Google Scholar]
  6. Baer, R., Bankier, A. T., Biggin, M. D. & 9 other authors ( 1984; ). DNA sequence and expression of the B95–8 Epstein–Barr virus genome. Nature 310, 207–211.[CrossRef]
    [Google Scholar]
  7. Baumann, M., Gires, O., Kolch, W., Mischak, H., Zeidler, R., Pich, D. & Hammerschmidt, W. ( 2000; ). The PKC targeting protein RACK1 interacts with the Epstein–Barr virus activator protein BZLF1. Eur J Biochem 267, 3891–3901.[CrossRef]
    [Google Scholar]
  8. Bell, P., Lieberman, P. M. & Maul, G. G. ( 2000; ). Lytic but not latent replication of Epstein–Barr virus is associated with PML and induces sequential release of nuclear domain 10 proteins. J Virol 74, 11800–11810.[CrossRef]
    [Google Scholar]
  9. Berk, A. J., Boyer, T. G., Kapanidis, A. N. & 7 other authors ( 1998; ). Mechanisms of viral activators. Cold Spring Harb Symp Quant Biol 63, 243–252.[CrossRef]
    [Google Scholar]
  10. Boshoff, C. & Chang, Y. ( 2001; ). Kaposi's sarcoma-associated herpesvirus: a new DNA tumor virus. Annu Rev Med 52, 453–470.[CrossRef]
    [Google Scholar]
  11. Cayrol, C. & Flemington, E. K. ( 1995; ). Identification of cellular target genes of the Epstein–Barr virus transactivator Zta – activation of transforming growth-factor β-Igh3 (Tgf-β-Igh3) and Tgf-β-1. J Virol 69, 4206–4212.
    [Google Scholar]
  12. Cayrol, C. & Flemington, E. ( 1996a; ). G0/G1 growth arrest mediated by a region encompassing the basic leucine zipper (bZIP) domain of the Epstein–Barr virus transactivator Zta. J Biol Chem 271, 31799–31802.[CrossRef]
    [Google Scholar]
  13. Cayrol, C. & Flemington, E. K. ( 1996b; ). The Epstein–Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. EMBO J 15, 2748–2759.
    [Google Scholar]
  14. Chen, C. J., Deng, Z., Kim, A. Y., Blobel, G. A. & Lieberman, P. M. ( 2001; ). Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol 21, 476–487.[CrossRef]
    [Google Scholar]
  15. Chi, T. & Carey, M. ( 1993; ). The ZEBRA activation domain: modular organization and mechanism of action. Mol Cell Biol 13, 7045–7055.
    [Google Scholar]
  16. Chi, T. & Carey, M. ( 1996; ). Assembly of the isomerized TFIIA-TFIID-TATA ternary complex is necessary and sufficient for gene activation. Genes Dev 10, 2540–2550.[CrossRef]
    [Google Scholar]
  17. Chi, T., Lieberman, P., Ellwood, K. & Carey, M. ( 1995a; ). A general mechanism for transcriptional synergy by eukaryotic activators. Nature 377, 254–257.[CrossRef]
    [Google Scholar]
  18. Chi, T., Lieberman, P., Lehman, A. & Carey, M. ( 1995b; ). Mechanisms of transcriptional activation by Zebra, an Epstein–Barr virus protein. FASEB J 9, A1462.
    [Google Scholar]
  19. Deng, Z., Chen, C. J., Zerby, D., Delecluse, H. J. & Lieberman, P. M. ( 2001; ). Identification of acidic and aromatic residues in the Zta activation domain essential for Epstein–Barr virus reactivation. J Virol 75, 10334–10347.[CrossRef]
    [Google Scholar]
  20. Dreyfus, D. H., Nagasawa, M., Kelleher, C. A. & Gelfand, E. W. ( 2000; ). Stable expression of Epstein–Barr virus BZLF-1-encoded ZEBRA protein activates p53-dependent transcription in human Jurkat T-lymphoblastoid cells. Blood 96, 625–634.
    [Google Scholar]
  21. Ellwood, K., Huang, W., Johnson, R. & Carey, M. ( 1999; ). Multiple layers of cooperativity regulate enhanceosome-responsive RNA polymerase II transcription complex assembly. Mol Cell Biol 19, 2613–2623.
    [Google Scholar]
  22. Everett, R. D. ( 2001; ). DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 20, 7266–7273.[CrossRef]
    [Google Scholar]
  23. Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C. J., Hofmann, K. & Bairoch, A. ( 2002; ). The prosite database, its status in 2002. Nucleic Acids Res 30, 235–238.[CrossRef]
    [Google Scholar]
  24. Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W. & Delecluse, H. J. ( 2000; ). The Epstein–Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19, 3080–3089.[CrossRef]
    [Google Scholar]
  25. Flemington, E. K. ( 2001; ). Herpesvirus lytic replication and the cell cycle: arresting new developments. J Virol 75, 4475–4481.[CrossRef]
    [Google Scholar]
  26. Flemington, E. K., Lytle, J. P., Cayrol, C., Borras, A. M. & Speck, S. H. ( 1994; ). DNA-binding-defective mutants of the Epstein–Barr virus lytic switch activator Zta transactivate with altered specificities. Mol Cell Biol 14, 3041–3052.
    [Google Scholar]
  27. Francis, A. L., Gradoville, L. & Miller, G. ( 1997; ). Alteration of a single serine in the basic domain of the Epstein–Barr virus ZEBRA protein separates its functions of transcriptional activation and disruption of latency. J Virol 71, 4543–4551.
    [Google Scholar]
  28. Francis, A., Ragoczy, T., Gradoville, L., Heston, L., El-Guindy, A., Endo, Y. & Miller, G. ( 1999; ). Amino acid substitutions reveal distinct functions of serine 186 of the ZEBRA protein in activation of early lytic cycle genes and synergy with the Epstein–Barr virus R transactivator. J Virol 73, 3054–3061.
    [Google Scholar]
  29. Gradoville, L., Gerlach, J., Grogan, E., Shedd, D., Nikiforow, S., Metroka, C. & Miller, G. ( 2000; ). Kaposi's sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line. J Virol 74, 6207–6212.[CrossRef]
    [Google Scholar]
  30. Gruffat, H., Portes-Sentis, S., Sergeant, A. & Manet, E. ( 1999; ). Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) encodes a homologue of the Epstein–Barr virus bZip protein EB1. J Gen Virol 80, 557–561.
    [Google Scholar]
  31. Gutsch, D. E., Holley-Guthrie, E. A., Zhang, Q., Stein, B., Blanar, M. A., Baldwin, A. S. & Kenney, S. C. ( 1994; ). The bZIP transactivator of Epstein–Barr virus, BZLF1, functionally and physically interacts with the p65 subunit of NF-κB. Mol Cell Biol 14, 1939–1948.
    [Google Scholar]
  32. Hicks, M. R., Balesaria, S., Medina-Palazon, C., Pandya, M. J., Woolfson, D. N. & Sinclair, A. J. ( 2001; ). Biophysical analysis of natural variants of the multimerization region of Epstein–Barr virus lytic-switch protein BZLF1. J Virol 75, 5381–5384.[CrossRef]
    [Google Scholar]
  33. Hong, Y., Holley-Guthrie, E. & Kenney, S. ( 1997; ). The bZip dimerization domain of the Epstein–Barr virus BZLF1 (Z) protein mediates lymphoid-specific negative regulation. Virology 229, 36–48.[CrossRef]
    [Google Scholar]
  34. Hwang, S., Gwack, Y., Byun, H., Lim, C. & Choe, J. ( 2001; ). The Kaposi's sarcoma-associated herpesvirus K8 protein interacts with CREB-binding protein (CBP) and represses CBP-mediated transcription. J Virol 75, 9509–9516.[CrossRef]
    [Google Scholar]
  35. Izumiya, Y., Lin, S. F., Ellison, T., Chen, L. Y., Izumiya, C., Luciw, P. & Kung, H. J. ( 2003; ). Kaposi's sarcoma-associated herpesvirus K-bZIP is a coregulator of K-Rta: physical association and promoter-dependent transcriptional repression. J Virol 77, 1441–1451.[CrossRef]
    [Google Scholar]
  36. Lieberman, P. ( 1994; ). Identification of functional targets of the Zta transcriptional activator by formation of stable preinitiation complex intermediates. Mol Cell Biol 14, 8365–8375.
    [Google Scholar]
  37. Lieberman, P. M. & Berk, A. J. ( 1991; ). The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev 5, 2441–2454.[CrossRef]
    [Google Scholar]
  38. Lieberman, P. M. & Berk, A. J. ( 1994; ). A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA-promoter DNA complex formation. Genes Dev 8, 995–1006.[CrossRef]
    [Google Scholar]
  39. Lieberman, P. M., Ozer, J. & Gursel, D. B. ( 1997; ). Requirement for transcription factor IIA (TFIIA)-TFIID recruitment by an activator depends on promoter structure and template competition. Mol Cell Biol 17, 6624–6632.
    [Google Scholar]
  40. Lin, S. F., Robinson, D. R., Miller, G. & Kung, H. J. ( 1999; ). Kaposi's sarcoma-associated herpesvirus encodes a bZIP protein with homology to BZLF1 of Epstein–Barr virus. J Virol 73, 1909–1917.
    [Google Scholar]
  41. Lu, J., Chen, S. Y., Chua, H. H., Liu, Y. S., Huang, Y. T., Chang, Y., Chen, J. Y., Sheen, T. S. & Tsai, C. H. ( 2000; ). Upregulation of tyrosine kinase TKT by the Epstein–Barr virus transactivator Zta. J Virol 74, 7391–7399.[CrossRef]
    [Google Scholar]
  42. Lukac, D. M., Renne, R., Kirshner, J. R. & Ganem, D. ( 1998; ). Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252, 304–312.[CrossRef]
    [Google Scholar]
  43. Lukac, D. M., Kirshner, J. R. & Ganem, D. ( 1999; ). Transcriptional activation by the product of open reading frame 50 of Kaposi's sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 73, 9348–9361.
    [Google Scholar]
  44. Lupas, A., Van Dyke, M. & Stock, J. ( 1991; ). Predicting coiled-coils from protein sequences. Science 252, 1162–1164.[CrossRef]
    [Google Scholar]
  45. Mauser, A., Holley-Guthrie, E., Simpson, D., Kaufmann, W. & Kenney, S. ( 2002a; ). The Epstein–Barr virus immediate-early protein BZLF1 induces both a G2 and a mitotic block. J Virol 76, 10030–10037.[CrossRef]
    [Google Scholar]
  46. Mauser, A., Holley-Guthrie, E., Zanation, A., Yarborough, W., Kaufmann, W., Klingelhutz, A., Seaman, W. T. & Kenney, S. ( 2002b; ). The Epstein–Barr virus immediate-early protein BZLF1 induces expression of E2F-1 and other proteins involved in cell cycle progression in primary keratinocytes and gastric carcinoma cells. J Virol 76, 12543–12552.[CrossRef]
    [Google Scholar]
  47. Mauser, A., Saito, S., Appella, E., Anderson, C. W., Seaman, W. T. & Kenney, S. ( 2002c; ). The Epstein–Barr virus immediate-early protein BZLF1 regulates p53 function through multiple mechanisms. J Virol 76, 12503–12512.[CrossRef]
    [Google Scholar]
  48. Miller, G. ( 1989; ). The switch between EBV latency and replication. Yale J Biol Med 62, 205–213.
    [Google Scholar]
  49. Morrison, T. E., Mauser, A., Wong, A., Ting, J. P. & Kenney, S. C. ( 2001; ). Inhibition of IFN-γ signaling by an Epstein–Barr virus immediate-early protein. Immunity 15, 787–799.[CrossRef]
    [Google Scholar]
  50. Ozer, J., Bolden, A. H. & Lieberman, P. M. ( 1996; ). Transcription factor IIA mutations show activator-specific defects and reveal a IIA function distinct from stimulation of TBP-DNA binding. J Biol Chem 271, 11182–11190.[CrossRef]
    [Google Scholar]
  51. Park, J., Seo, T., Hwang, S. M., Lee, D., Gwack, Y. & Choe, J. ( 2000; ). The K-bZIP protein from Kaposi's sarcoma-associated herpesvirus interacts with p53 and represses its transcriptional activity. J Virol 74, 11977–11982.[CrossRef]
    [Google Scholar]
  52. Pfitzner, E., Becker, P., Rolke, A. & Schule, R. ( 1995; ). Functional antagonism between the retinoic acid receptor and the viral transactivator BZLF1 is mediated by protein-protein interactions. Proc Natl Acad Sci U S A 92, 12265–12269.[CrossRef]
    [Google Scholar]
  53. Polson, A. G., Huang, L., Lukac, D. M., Blethrow, J. D., Morgan, D. O., Burlingame, A. L. & Ganem, D. ( 2001; ). Kaposi's sarcoma-associated herpesvirus K-bZIP protein is phosphorylated by cyclin-dependent kinases. J Virol 75, 3175–3184.[CrossRef]
    [Google Scholar]
  54. Portes-Sentis, S., Manet, E., Gourru, G., Sergeant, A. & Gruffat, H. ( 2001; ). Identification of a short amino acid sequence essential for efficient nuclear targeting of the Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8 K8 protein. J Gen Virol 82, 507–512.
    [Google Scholar]
  55. Ragoczy, T., Heston, L. & Miller, G. ( 1998; ). The Epstein–Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72, 7978–7984.
    [Google Scholar]
  56. Rickinson, A. B. & Kieff, E. ( 1996; ). Epstein–Barr virus. In Fields Virology, 3rd edn, pp. 2397–2446. Edited by B. N. Fields, D. M Knipe & P. M. Howley. Philadelphia: Lippincott-Raven.
  57. Rodriguez, A., Armstrong, M., Dwyer, D. & Flemington, E. ( 1999; ). Genetic dissection of cell growth arrest functions mediated by the Epstein–Barr virus lytic gene product, Zta. J Virol 73, 9029–9038.
    [Google Scholar]
  58. Rodriguez, A., Jung, E. J., Yin, Q., Cayrol, C. & Flemington, E. K. ( 2001; ). Role of c-myc regulation in Zta-mediated induction of the cyclin-dependent kinase inhibitors p21 and p27 and cell growth arrest. Virology 284, 159–169.[CrossRef]
    [Google Scholar]
  59. Russo, J. J., Bohenzky, R. A., Chien, M.-C. & 8 other authors ( 1996; ). Nucleotide sequence of the Kaposi's sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93, 14862–14867.[CrossRef]
    [Google Scholar]
  60. Schepers, A., Pich, D. & Hammerschmidt, W. ( 1996; ). Activation of oriLyt, the lytic origin of DNA replication of Epstein–Barr virus, by BZLF1. Virology 220, 367–376.[CrossRef]
    [Google Scholar]
  61. Schwarzmann, F., Jager, M., Prang, N. & Wolf, H. ( 1998; ). The control of lytic replication of Epstein–Barr virus in B lymphocytes. Int J Mol Med 1, 137–142.
    [Google Scholar]
  62. Seaman, W. T., Ye, D. S., Wang, R. X., Hale, E. E., Weisse, M. & Quinlivan, E. B. ( 1999; ). Gene expression from the ORF50/K8 region of Kaposi's sarcoma-associated herpesvirus. Virology 263, 436–449.[CrossRef]
    [Google Scholar]
  63. Sinclair, A. J. & Farrell, P. J. ( 1992; ). Epstein–Barr virus transcription factors. Cell Growth Differ 3, 557–563.
    [Google Scholar]
  64. Sista, N. D., Pagano, J. S., Liao, W. & Kenney, S. ( 1993; ). Retinoic acid is a negative regulator of the Epstein–Barr virus protein (BZLF1) that mediates disruption of latent infection. Proc Natl Acad Sci U S A 90, 3894–3898.[CrossRef]
    [Google Scholar]
  65. Sista, N. D., Barry, C., Sampson, K. & Pagano, J. ( 1995; ). Physical and functional interaction of the Epstein–Barr virus BZLF1 transactivator with the retinoic acid receptors RAR α and RXR α. Nucleic Acids Res 23, 1729–1736.[CrossRef]
    [Google Scholar]
  66. Speck, S. H., Chatila, T. & Flemington, E. ( 1997; ). Reactivation of Epstein–Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol 5, 399–405.[CrossRef]
    [Google Scholar]
  67. Sun, R., Lin, S. F., Gradoville, L., Yuan, Y., Zhu, F. X. & Miller, G. ( 1998; ). A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 95, 10866–10871.[CrossRef]
    [Google Scholar]
  68. Sun, R., Lin, S. F., Staskus, K., Gradoville, L., Grogan, E., Haase, A. & Miller, G. ( 1999; ). Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J Virol 73, 2232–2242.
    [Google Scholar]
  69. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  70. Wang, S. E., Wu, F. Y., Fujimuro, M., Zong, J., Hayward, S. D. & Hayward, G. S. ( 2003; ). Role of CAAT/enhancer-binding protein α (C/EBP α) in activation of the Kaposi's sarcoma-associated herpesvirus (KSHV) lytic cycle replication-associated protein (RAP) promoter in cooperation with the KSHV replication and transcription activator (RTA) and RAP. J Virol 77, 600–623.[CrossRef]
    [Google Scholar]
  71. Wu, F. Y., Ahn, J. H., Alcendor, D. J., Jang, W. J., Xiao, J., Hayward, S. D. & Hayward, G. S. ( 2001; ). Origin-independent assembly of Kaposi's sarcoma-associated herpesvirus DNA replication compartments in transient cotransfection assays and association with the ORF-K8 protein and cellular PML. J Virol 75, 1487–1506.[CrossRef]
    [Google Scholar]
  72. Wu, F. Y., Tang, Q. Q., Chen, H., ApRhys, C., Farrell, C., Chen, J., Fujimuro, M., Lane, M. D. & Hayward, G. S. ( 2002; ). Lytic replication-associated protein (RAP) encoded by Kaposi's sarcoma-associated herpesvirus causes p21CIP-1-mediated G1 cell cycle arrest through CCAAT/enhancer-binding protein-α. Proc Natl Acad Sci U S A 99, 10683–10688.[CrossRef]
    [Google Scholar]
  73. Wu, F. Y., Chen, H., Wang, S. E. & 7 other authors ( 2003; ). CCAAT/enhancer binding protein α interacts with ZTA and mediates ZTA-induced p21(CIP-1) accumulation and G1 cell cycle arrest during the Epstein–Barr virus lytic cycle. J Virol 77, 1481–1500.[CrossRef]
    [Google Scholar]
  74. Zerby, D., Chen, C. J., Poon, E., Lee, D., Shiekhattar, R. & Lieberman, P. M. ( 1999; ). The amino-terminal C/H1 domain of CREB binding protein mediates Zta transcriptional activation of latent Epstein–Barr virus. Mol Cell Biol 19, 1617–1626.
    [Google Scholar]
  75. Zhang, Q., Gutsch, D. & Kenney, S. ( 1994; ). Functional and physical interaction between p53 and BZLF1: implications for Epstein–Barr virus latency. Mol Cell Biol 14, 1929–1938.
    [Google Scholar]
  76. Zhu, F. X., Cusano, T. & Yuan, Y. ( 1999; ). Identification of the immediate-early transcripts of Kaposi's sarcoma-associated herpesvirus. J Virol 73, 5556–5567.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19112-0
Loading
/content/journal/jgv/10.1099/vir.0.19112-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error