1887

Abstract

(SBLV) is a member of the genus , and is closely related to (BMV) and (CCMV). Compatible interactions between viral components are required for successful infection of plants by BMV and CCMV. To further our understanding of interactions between bromovirus components, we used SBLV to produce reassortants among the three bromoviruses. We found that SBLV RNA 2 functioned with heterologous bromovirus RNA 1 in infections of whole plants and protoplasts of , although SBLV RNA 1 did not function with heterologous bromovirus RNA 2. A DNA-based transient assay for 1a and 2a proteins, which are encoded by RNAs 1 and 2, respectively further suggested that SBLV 2a protein may function in combination with heterologous bromovirus 1a protein. Moreover, analysis of the ability of reassortants to spread locally revealed that an RNA 2-mediated interaction between viral components may be required for efficient cell-to-cell movement of bromoviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19020-0
2003-06-01
2021-03-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/6/vir841367.html?itemId=/content/journal/jgv/10.1099/vir.0.19020-0&mimeType=html&fmt=ahah

References

  1. Allison R. F., Janda M., Ahlquist P.. 1988; Infectious in vitro transcripts from cowpea chlorotic mottle virus cDNA clones and exchange of individual RNA components with brome mosaic virus. J Virol62:3581–3588
    [Google Scholar]
  2. Allison R. F., Thompson C., Ahlquist P.. 1990; Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection. Proc Natl Acad Sci U S A87:1820–1824
    [Google Scholar]
  3. Choi Y. G., Dreher T. W., Rao A. L. N.. 2002; tRNA elements mediate the assembly of an icosahedral RNA virus. Proc Natl Acad Sci U S A99:655–660
    [Google Scholar]
  4. Damayanti T. A., Nagano H., Mise K., Furusawa I., Okuno T.. 1999; Brome mosaic virus defective RNAs generated during infection of barley plants. J Gen Virol80:2511–2518
    [Google Scholar]
  5. Damayanti T. A., Nagano H., Mise K., Furusawa I., Okuno T.. 2002; Positional effect of deletions on viability, especially on encapsidation, of brome mosaic virus D-RNA in barley protoplasts. Virology293:314–319
    [Google Scholar]
  6. De Jong W., Ahlquist P.. 1995; Host-specific alterations in viral RNA accumulation and infection spread in a brome mosaic virus isolate with an expanded host range. J Virol69:1485–1492
    [Google Scholar]
  7. Dinant S., Janda M., Kroner P. A., Ahlquist P.. 1993; Bromovirus RNA replication and transcription require compatibility between the polymerase- and helicase-like viral RNA synthesis proteins. J Virol67:7181–7189
    [Google Scholar]
  8. French R., Ahlquist P.. 1987; Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3. J Virol61:1457–1465
    [Google Scholar]
  9. Fujisaki K., Hagihara F., Kaido M., Mise K., Okuno T.. 2003; Complete nucleotide sequence of a bromovirus, spring beauty latent virus infectious to Arabidopsis thaliana . Arch Virol148:165–175
    [Google Scholar]
  10. Gal-On A., Kaplan I., Roossinck M. J., Palukaitis P.. 1994; The kinetics of infection of zucchini squash by cucumber mosaic virus indicate a function for RNA 1 in virus movement. Virology205:280–289
    [Google Scholar]
  11. Hirashima K., Watanabe Y.. 2001; Tobamovirus replicase coding region is involved in cell-to-cell movement. J Virol75:8831–8836
    [Google Scholar]
  12. Janda M., French R., Ahlquist P.. 1987; High efficiency T7 polymerase synthesis of infectious RNA from cloned brome mosaic virus cDNA and effects of 5′ extentions on transcript infectivity. Virology158:259–262
    [Google Scholar]
  13. Kaido M., Mori M., Mise K., Okuno T., Furusawa I.. 1995; Inhibition of brome mosaic virus (BMV) amplification in protoplasts from transgenic tobacco plants expressing replicable BMV RNAs. J Gen Virol76:2827–2833
    [Google Scholar]
  14. Kao C. C., Ahlquist P.. 1992; Identification of the domains required for direct interaction of the helicase-like and polymerase-like RNA replication proteins of brome mosaic virus. J Virol66:7293–7302
    [Google Scholar]
  15. Kao C. C., Quadt R., Hershberger R. P., Ahlquist P.. 1992; Brome mosaic virus RNA replication protein 1a and 2a form a complex in vitro. J Virol66:6322–6329
    [Google Scholar]
  16. Kim S. H., Palukaitis P., Park V. I.. 2002; Phosphorylation of cucumber mosaic virus RNA polymerase 2a protein inhibits formation of replicase complex. EMBO J21:2292–2300
    [Google Scholar]
  17. Kroner P., Ahlquist P.. 1992; RNA-based viruses. In Molecular Plant Pathology: a Practical Approach . vol 1 pp 23–43 Edited by Gurr S. J., McPherson M. J., Bowles M. J., Bowles D. J.. Oxford: IRL Press;
  18. Kroner P., Richards D., Traynor P., Ahlquist P.. 1989; Defined mutations in a small region of the brome mosaic virus 2a gene cause diverse temperature-sensitive RNA replication phenotypes. J Virol63:5302–5309
    [Google Scholar]
  19. Kroner P. A., Young B. M., Ahlquist P.. 1990; Analysis of the role of brome mosaic virus 1a protein domains in RNA replication, using linker insertion mutagenesis. J Virol64:6110–6120
    [Google Scholar]
  20. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  21. Lane L. C.. 1981; Bromoviruses. In Handbook of Plant Virus Infections and Comparative Diagnosis pp. 333–376 Edited by Kurstak E.. Amsterdam: Elsevier/North-Holland;
    [Google Scholar]
  22. Masuta C., Ueda S., Suzuki M., Uyeda I.. 1998; Evolution of a quadripartite hybrid virus by interspecific exchange and recombination between replicase components of two related tripartite RNA viruses. Proc Natl Acad Sci U S A95:10487–10492
    [Google Scholar]
  23. Maurice W., Heijden V. D., Carette J. E., Reinhoud P. J., Haegi A., Bol J. F.. 2001; Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane. J Virol75:1879–1887
    [Google Scholar]
  24. Mise K., Allison R. F., Janda M., Ahlquist P.. 1993; Bromovirus movement protein genes play a crucial role in host specificity. J Virol67:2815–2823
    [Google Scholar]
  25. Okuno T., Furusawa I.. 1978; Modes of infection of barley protoplasts with brome mosaic virus. J Gen Virol38:409–418
    [Google Scholar]
  26. O'Reilly E. K., Paul J. D., Kao C. C.. 1997; Analysis of the interaction of viral RNA replication proteins by using the yeast-two-hybrid assay. J Virol71:7526–7532
    [Google Scholar]
  27. Sacher R., Ahlquist P.. 1989; Effects of deletions in the N-terminal basic arm of brome mosaic virus coat protein on RNA packaging and systemic infection. J Virol63:4545–4552
    [Google Scholar]
  28. Sasaki N., Arimoto M., Nagano H., Mori M., Kaido M., Mise K., Okuno T.. 2003; The movement protein gene is involved in the virus-specific requirement of coat protein in cell-to-cell movement of bromoviruses. Arch Virol148:803–812
    [Google Scholar]
  29. Schmitz I., Rao A. L. N.. 1996; Molecular study on bromovirus capsid protein. I. Characterization of cell-to-cell movement-defective RNA3 variants of brome mosaic virus. Virology226:281–293
    [Google Scholar]
  30. Shang H., Bujarski J. J.. 1993; Interstrain pseudorecombinants of cowpea chlorotic mottle virus: effects on systemic spread and symptom formation in soybean and cowpea. Mol Plant Microbe Interact6:755–763
    [Google Scholar]
  31. Sullivan M. L., Ahlquist P.. 1999; A brome mosaic virus intergenic RNA3 replication signal functions with viral replication protein 1a to dramatically stabilize RNA in vivo. J Virol73:2622–2632
    [Google Scholar]
  32. Takahashi H., Goto N., Ehara Y.. 1994; Hypersensitive response in cucumber mosaic virus-inoculated Arabidopsis thaliana . Plant J6:369–377
    [Google Scholar]
  33. Takahashi H., Suzuki M., Natsuaki K., Shigyo T., Hino K., Teraoka T., Hosokawa D., Ehara Y.. 2001; Mapping the virus and host genes involved in the resistance response in cucumber mosaic virus-infected Arabidopsis thaliana . Plant Cell Physiol42:340–347
    [Google Scholar]
  34. Töpfer R., Matzeit V., Gronenborn B., Schell J., Steinbiss H. H.. 1987; A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res15:5890
    [Google Scholar]
  35. Traynor P., Young B. M., Ahlquist P.. 1991; Deletion analysis of brome mosaic virus 2a protein: effects on RNA replication and systemic spread. J Virol65:2807–2815
    [Google Scholar]
  36. Valverde R. A.. 1985; Spring beauty latent bromovirus: a new member of the bromovirus group. Phytopathology75:395–398
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19020-0
Loading
/content/journal/jgv/10.1099/vir.0.19020-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error