1887

Abstract

The Epstein–Barr virus latent membrane protein (LMP 1) functions as a constitutively active signalling molecule and associates in lipid rafts clustered with other signalling molecules. Using immunofluorescent confocal microscopy, LMP 1 was shown to have an heterogeneous distribution among individual cells which was not related to the cell cycle stage. LMP 1 was shown to localize to intracellular compartments in cells other than the plasma membrane. Co-labelling of cells with both an LMP 1 antibody and an antibody to the Golgi protein GS15 revealed that the intracellular LMP 1 partly co-localized with the Golgi apparatus. Further confirmation of intracellular LMP 1 localization was obtained by immunoelectron microscopy with rabbit polyclonal LMP 1 antibodies and cryosectioning. As well as being present in intracellular foci, LMP 1 co-localized in part with MHC-II and was present on exosomes derived from a lymphoblastoid cell line. Preparations of LMP 1 containing exosomes were shown to inhibit the proliferation of peripheral blood mononuclear cells, suggesting that LMP 1 could be involved in immune regulation. This may be of particular relevance in EBV-associated tumours such as nasopharyngeal carcinoma and Hodgkin's disease, as LMP 1-containing exosomes may be taken up by infiltrating T-lymphocytes, where LMP 1 could exert an anti-proliferative effect, allowing the tumour cells to evade the immune system.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18944-0
2003-07-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/7/vir841871.html?itemId=/content/journal/jgv/10.1099/vir.0.18944-0&mimeType=html&fmt=ahah

References

  1. Andrews, N. W. ( 2000; ). Regulated secretion of conventional lysosomes. Trends Cell Biol 10, 316–321.[CrossRef]
    [Google Scholar]
  2. Ardila-Osorio, H., Clausse, B., Mishal, Z., Wiels, J., Tursz, T. & Busson, P. ( 1999; ). Evidence of LMP1–TRAF3 interactions in glycosphingolipid-rich complexes of lymphoblastoid and nasopharyngeal carcinoma cells. Int J Cancer 81, 645–649.[CrossRef]
    [Google Scholar]
  3. Baichwal, V. R. & Sugden, B. ( 1987; ). Posttranslational processing of an Epstein–Barr virus-encoded membrane protein expressed in cells transformed by Epstein–Barr virus. J Virol 61, 866–875.
    [Google Scholar]
  4. Benaroch, P., Yilla, M., Raposo, G., Ito, K., Miwa, K., Geuze, H. J. & Ploegh, H. L. ( 1995; ). How MHC class II molecules reach the endocytic pathway. EMBO J 14, 37–49.
    [Google Scholar]
  5. Bloss, T., Kaykas, A. & Sugden, B. ( 1999; ). Dissociation of patching by latent membrane protein-1 of Epstein–Barr virus from its stimulation of NF-κB activity. J Gen Virol 80, 3227–3232.
    [Google Scholar]
  6. Boos, H., Berger, R., Kuklik-Roos, C., Iftner, T. & Mueller-Lantzsch, N. ( 1987; ). Enhancement of Epstein–Barr virus membrane protein (LMP) expression by serum, TPA, or n-butyrate in latently infected Raji cells. Virology 159, 161–165.[CrossRef]
    [Google Scholar]
  7. Chiu, I., Davis, D. M. & Strominger, J. L. ( 1999; ). Trafficking of spontaneously endocytosed MHC proteins. Proc Natl Acad Sci U S A 96, 13944–13949.[CrossRef]
    [Google Scholar]
  8. Clausse, B., Fizazi, K., Walczak, V., Tetaud, C., Wiels, J., Tursz, T. & Busson, P. ( 1997; ). High concentration of the EBV latent membrane protein 1 in glycosphingolipid-rich complexes from both epithelial and lymphoid cells. Virology 228, 285–293.[CrossRef]
    [Google Scholar]
  9. Dantuma, N. & Massucci, M. ( 2003; ). The ubiquitin/proteasome system in Epstein–Barr virus infection and related malignancies. Semin Cancer Biol (in press).
    [Google Scholar]
  10. Denzer, K., Kleijmeer, M. J., Heijnen, H. F., Stoorvogel, W. & Geuze, H. J. ( 2000; ). Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113, 3365–3374.
    [Google Scholar]
  11. Dukers, D. F., Meij, P., Vervoort, M. B., Vos, W., Scheper, R. J., Meijer, C. J., Bloemena, E. & Middeldorp, J. M. ( 2000; ). Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J Immunol 165, 663–670.[CrossRef]
    [Google Scholar]
  12. Gires, O., Zimber-Strobl, U., Gonnella, R., Ueffing, M., Marschall, G., Zeidler, R., Pich, D. & Hammerschmidt, W. ( 1997; ). Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J 16, 6131–6140.[CrossRef]
    [Google Scholar]
  13. Hudson, G. S., Bankier, A. T., Satchwell, S. C. & Barrell, B. G. ( 1985; ). The short unique region of the B95-8 Epstein–Barr virus genome. Virology 147, 81–98.[CrossRef]
    [Google Scholar]
  14. Kopito, R. R. ( 2000; ). Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10, 524–530.[CrossRef]
    [Google Scholar]
  15. Laszlo, L., Tuckwell, J., Self, T., Lowe, J., Landon, M., Smith, S., Hawthorne, J. N. & Mayer, R. J. ( 1991; ). The latent membrane protein-1 in Epstein–Barr virus-transformed lymphoblastoid cells is found with ubiquitin-protein conjugates and heat-shock protein 70 in lysosomes oriented around the microtubule organizing centre. J Pathol 164, 203–214.[CrossRef]
    [Google Scholar]
  16. Lelouard, H., Gatti, E., Cappello, F., Gresser, O., Camosseto, V. & Pierre, P. ( 2002; ). Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 417, 177–182.[CrossRef]
    [Google Scholar]
  17. Liebowitz, D. & Kieff, E. ( 1989; ). Epstein–Barr virus latent membrane protein: induction of B-cell activation antigens and membrane patch formation does not require vimentin. J Virol 63, 4051–4054.
    [Google Scholar]
  18. Liebowitz, D., Wang, D. & Kieff, E. ( 1986; ). Orientation and patching of the latent infection membrane protein encoded by Epstein–Barr virus. J Virol 58, 233–237.
    [Google Scholar]
  19. Liebowitz, D., Kopan, R., Fuchs, E., Sample, J. & Kieff, E. ( 1987; ). An Epstein–Barr virus transforming protein associates with vimentin in lymphocytes. Mol Cell Biol 7, 2299–2308.
    [Google Scholar]
  20. Mann, K. P., Staunton, D. & Thorley-Lawson, D. A. ( 1985; ). Epstein–Barr virus-encoded protein found in plasma membranes of transformed cells. J Virol 55, 710–720.
    [Google Scholar]
  21. Meij, P., Vervoort, M. B. H. J., Meijer, C. J. L. M., Bloemena, E. & Middeldorp, J. M. ( 2000; ). Production monitoring and purification of EBV encoded latent membrane protein 1 expressed and secreted by recombinant baculovirus infected insect cells. J Virol Methods 90, 193–204.[CrossRef]
    [Google Scholar]
  22. Morales, C. R., Zhao, Q. & Lefrancois, S. ( 1999; ). Biogenesis of lysosomes by endocytic flow of plasma membrane. Biocell 23, 149–160.
    [Google Scholar]
  23. Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. ( 2001; ). cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J 20, 2171–2179.[CrossRef]
    [Google Scholar]
  24. Oudejans, J. J., Jiwa, N. M., Kummer, J. A. & 7 other authors ( 1997; ). In situ detection of activated cytotoxic cells in Hodgkin's disease biopsies: recognition of cases with poor clinical outcome. Blood 89, 1376–1382.
    [Google Scholar]
  25. Oudejans, J. J., Harijadi, A., Kummer, J. A. & 7 other authors ( 2003; ). High numbers of granzyme B/CD8 positive tumour infiltrating lymphocytes in nasopharyngeal carcinoma biopsies predict rapid fatal outcome in patients treated with curative intent. J Pathol (in press).
    [Google Scholar]
  26. Puls, A., Eliopoulos, A. G., Nobes, C. D., Bridges, T., Young, L. S. & Hall, A. ( 1999; ). Activation of the small GTPase Cdc42 by the inflammatory cytokines TNF(alpha) and IL-1, and by the Epstein–Barr virus transforming protein LMP1. J Cell Sci 112, 2983–2992.
    [Google Scholar]
  27. Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J. & Geuze, H. J. ( 1996; ). B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183, 1161–1172.[CrossRef]
    [Google Scholar]
  28. Rowe, M., Evans, H. S., Young, L. S., Hennessy, K., Kieff, E. & Rickinson, A. B. ( 1987; ). Monoclonal antibodies to the latent membrane protein of Epstein–Barr virus reveal heterogeneity of the protein and inducible expression in virus-transformed cells. J Gen Virol 68, 1575–1586.[CrossRef]
    [Google Scholar]
  29. Sanderson, F., Kleijmeer, M. J., Kelly, A., Verwoerd, D., Tulp, A., Neefjes, J. J., Geuze, H. J. & Trowsdale, J. ( 1994; ). Accumulation of HLA-DM, a regulator of antigen presentation, in MHC class II compartments. Science 266, 1566–1569.[CrossRef]
    [Google Scholar]
  30. Skokos, D., Le-Panse, S., Villa, I., Rousselle, J. C., Peronet, R., David, B., Namane, A. & Mecheri, S. ( 2001; ). Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J Immunol 166, 868–876.[CrossRef]
    [Google Scholar]
  31. Smyth, C., Logan, G., Weinberger, R. P., Rowe, P. B., Alexander, I. E. & Smythe, J. A. ( 1998; ). Identification of a dynamic intracellular reservoir of CD86 protein in peripheral blood monocytes that is not associated with the Golgi complex. J Immunol 160, 5390–5396.
    [Google Scholar]
  32. Wang, D., Liebowitz, D. & Kieff, E. ( 1985; ). An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43, 831–840.[CrossRef]
    [Google Scholar]
  33. Wang, D., Liebowitz, D., Wang, F., Gregory, C., Rickinson, A., Larson, R., Springer, T. & Kieff, E. ( 1988; ). Epstein–Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: deletion of the amino terminus abolishes activity. J Virol 62, 4173–4184.
    [Google Scholar]
  34. Xu, Y., Wong, S. H., Zhang, T., Subramaniam, V. N. & Hong, W. ( 1997; ). GS15, a 15-kilodalton Golgi soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) homologous to rbet1. J Biol Chem 272, 20162–20166.[CrossRef]
    [Google Scholar]
  35. Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G. & Amigorena, S. ( 1998; ). Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4, 594–600.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18944-0
Loading
/content/journal/jgv/10.1099/vir.0.18944-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error