1887

Abstract

Glycoproteins M (gM) and N (gN) are well conserved across the herpesvirus family and their involvement in virus penetration and egress is well described, especially for alphaherpesviruses. Because there was no previous study on the homologues of human herpesvirus 8 glycoproteins M (gM8) and N (gN8), we analysed their biochemical and functional characteristics. We found that: (i) gM8 aggregated following heat treatment; (ii) gM8 was a virion component; (iii) gM8 and gN8 were -glycosylated; (iv) gM8 formed a specific complex with gN8; and (v) gN8 was required for functional processing of gM8. Co-expression of gM8 and gN8 inhibited cell fusion induced either by a combination of herpes simplex virus type 1 glycoproteins or by Molony murine leukaemia virus envelope protein. These results indicate that, in addition to the similar biochemical properties, the fusion inhibition reported previously only for alphaherpesviruses is a function conserved in the gammaherpesvirus subfamily.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18941-0
2003-06-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/6/vir841485.html?itemId=/content/journal/jgv/10.1099/vir.0.18941-0&mimeType=html&fmt=ahah

References

  1. Adams R., Cunningham C., Davison M. D., MacLean C. A., Davison A. J.. 1998; Characterization of the protein encoded by gene UL49A of herpes simplex virus type 1. J Gen Virol79:813–823
    [Google Scholar]
  2. Baines J. D., Roizman B.. 1991; The open reading frames UL3, UL4, UL10, and UL16 are dispensable for the replication of herpes simplex virus 1 in cell culture. J Virol65:938–944
    [Google Scholar]
  3. Baines J. D., Roizman B.. 1993; The UL10 gene of herpes simplex virus 1 encodes a novel viral glycoprotein, gM, which is present in the virion and in the plasma membrane of infected cells. J Virol67:1441–1452
    [Google Scholar]
  4. Brack A. R., Dijkstra J. M., Granzow H., Klupp B. G., Mettenleiter T. C.. 1999; Inhibition of virion maturation by simultaneous deletion of glycoproteins E, I, and M of pseudorabies virus. J Virol73:5364–5372
    [Google Scholar]
  5. Dijkstra J. M., Visser N., Mettenleiter T. C., Klupp B. G.. 1996; Identification and characterization of pseudorabies virus glycoprotein gM as a nonessential virion component. J Virol70:5684–5688
    [Google Scholar]
  6. Dunphy W. G., Rothman J. E.. 1985; Compartmental organization of the Golgi stack. Cell42:13–21
    [Google Scholar]
  7. Elroy-Stein O., Moss B.. 1990; Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc Natl Acad Sci U S A87:6743–6747
    [Google Scholar]
  8. Fries K. L., Miller W. E., Raab-Traub N.. 1999; The A20 protein interacts with the Epstein–Barr virus latent membrane protein 1 (LMP1) and alters the LMP1/TRAF1/TRADD complex. Virology264:159–166
    [Google Scholar]
  9. Gong M., Kieff E.. 1990; Intracellular trafficking of two major Epstein–Barr virus glycoproteins, gp350/220 and gp110. J Virol64:1507–1516
    [Google Scholar]
  10. Hobom U., Brune W., Messerle M., Hahn G., Koszinowski U. H.. 2000; Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol74:7720–7729
    [Google Scholar]
  11. Inoue N., Dambaugh T. R., Rapp J. C., Pellett P. E.. 1994; Alphaherpesvirus origin-binding protein homolog encoded by human herpesvirus 6B, a betaherpesvirus, binds to nucleotide sequences that are similar to ori regions of alphaherpesviruses. J Virol68:4126–4136
    [Google Scholar]
  12. Inoue N., Mar E. C., Dollard S. C., Pau C. P., Zheng Q., Pellett P. E.. 2000; New immunofluorescence assays for detection of human herpesvirus 8-specific antibodies. Clin Diagn Lab Immunol7:427–435
    [Google Scholar]
  13. Jöns A., Dijkstra J. M., Mettenleiter T. C.. 1998; Glycoproteins M and N of pseudorabies virus form a disulfide-linked complex. J Virol72:550–557
    [Google Scholar]
  14. Klupp B. G., Nixdorf R., Mettenleiter T. C.. 2000; Pseudorabies virus glycoprotein M inhibits membrane fusion. J Virol74:6760–6768
    [Google Scholar]
  15. König P., Giesow K., Keil G. M.. 2002; Glycoprotein M of bovine herpesvirus 1 (BHV-1) is nonessential for replication in cell culture and is involved in inhibition of bovine respiratory syncytial virus F protein induced syncytium formation in recombinant BHV-1 infected cells. Vet Microbiol86:37–49
    [Google Scholar]
  16. Lake C. M., Hutt-Fletcher L. M.. 2000; Epstein–Barr virus that lacks glycoprotein gN is impaired in assembly and infection. J Virol74:11162–11172
    [Google Scholar]
  17. Lake C. M., Molesworth S. J., Hutt-Fletcher L. M.. 1998; The Epstein–Barr virus (EBV) gN homolog BLRF1 encodes a 15-kilodalton glycoprotein that cannot be authentically processed unless it is coexpressed with the EBV gM homolog BBRF3. J Virol72:5559–5564
    [Google Scholar]
  18. Mach M., Kropff B., Dal Monte P., Britt W.. 2000; Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). . : J Virol74:11881–11892
    [Google Scholar]
  19. MacLean C. A., Efstathiou S., Elliott M. L., Jamieson F. E., McGeoch D. J.. 1991; Investigation of herpes simplex virus type 1 genes encoding multiply inserted membrane proteins. J Gen Virol72:897–906
    [Google Scholar]
  20. MacLean C. A., Robertson L. M., Jamieson F. E.. 1993; Characterization of the UL10 gene product of herpes simplex virus type 1 and investigation of its role in vivo . J Gen Virol74:975–983
    [Google Scholar]
  21. Melikyan G. B., Markosyan R. M., Brener S. A., Rozenberg Y., Cohen F. S.. 2000; Role of the cytoplasmic tail of ecotropic moloney murine leukemia virus Env protein in fusion pore formation. J Virol74:447–455
    [Google Scholar]
  22. Osterrieder N., Neubauer A., Brandmüller C., Braun B., Kaaden O. R., Baines J. D.. 1996; The equine herpesvirus 1 glycoprotein gp21/22a, the herpes simplex virus type 1 gM homolog, is involved in virus penetration and cell-to-cell spread of virions. J Virol70:4110–4115
    [Google Scholar]
  23. Pilling A., Davison A. J., Telford E. A., Meredith D. M.. 1994; The equine herpesvirus type 1 glycoprotein homologous to herpes simplex virus type 1 glycoprotein M is a major constituent of the virus particle. J Gen Virol75:439–442
    [Google Scholar]
  24. Renne R., Zhong W., Herndier B., McGrath M., Abbey N., Kedes D., Ganem D.. 1996; Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med2:342–346
    [Google Scholar]
  25. Rudolph J., Osterrieder N.. 2002; Equine herpesvirus type 1 devoid of gM and gp2 is severely impaired in virus egress but not direct cell-to-cell spread. Virology293:356–367
    [Google Scholar]
  26. Rudolph J., Seyboldt C., Granzow H., Osterrieder N.. 2002; The gene 10 (UL49·5) product of equine herpesvirus 1 is necessary and sufficient for functional processing of glycoprotein M. J Virol76:2952–2963
    [Google Scholar]
  27. Stewart J. P., Janjua N. J., Sunil-Chandra N. P., Nash A. A., Arrand J. R.. 1994; Characterization of murine gammaherpesvirus 68 glycoprotein B (gB) homolog: similarity to Epstein–Barr virus gB (gp110). J Virol68:6496–6504
    [Google Scholar]
  28. Tischer B. K., Schumacher D., Messerle M., Wagner M., Osterrieder N.. 2002; The products of the UL10 (gM) and the UL49·5 genes of Marek's disease virus serotype 1 are essential for virus growth in cultured cells. J Gen Virol83:997–1003
    [Google Scholar]
  29. Turner A., Bruun B., Minson T., Browne H.. 1998; Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol72:873–875
    [Google Scholar]
  30. Wu S. X., Zhu X. P., Letchworth G. J.. 1998; Bovine herpesvirus 1 glycoprotein M forms a disulfide-linked heterodimer with the UL49·5 protein. J Virol72:3029–3036
    [Google Scholar]
  31. Wyatt L. S., Moss B., Rozenblatt S.. 1995; Replication-deficient vaccinia virus encoding bacteriophage T7 RNA polymerase for transient gene expression in mammalian cells. Virology210:202–205
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18941-0
Loading
/content/journal/jgv/10.1099/vir.0.18941-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error