1887

Abstract

Human immunodeficiency virus type 2 (HIV-2) infections cause severe immunodeficiency in humans, although HIV-2 is associated frequently with reduced virulence and pathogenicity compared to HIV-1. Genetic determinants that play a role in HIV pathogenesis are relatively poorly understood but has been implicated in inducing a more pathogenic phenotype . However, relatively little is known about the role of in HIV-2 pathogenesis. To address this, the genetic composition of 44 alleles from 37 HIV-2-infected individuals in Portugal, encompassing a wide spectrum of disease associations, CD4 counts and virus load, has been assessed. All alleles were subtype A, with no evidence of gross deletions, truncations or disruptions in the -encoding sequence; all were full-length and intact. HIV-2 long terminal repeat sequences were conserved and also indicated subtype A infections. Detailed analysis of motifs that mediate function in HIV-1 and simian immunodeficiency virus, such as CD4 downregulation and putative SH2/SH3 interactions, revealed significant natural variation. In particular, the central PxxPLR motif exhibited wide interpatient variation, ranging from an HIV-1-like tetra-proline structure (PxxP) to a disrupted minimal core motif (PxxQLR). The P→Q substitution was associated with an asymptomatic phenotype (Fisher's exact test, =0·026) and low virus loads. These data indicate that discrete differences in the gene sequence rather than gross structural changes are more likely to play a role in HIV-2 pathogenesis mediated via specific functional interactions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18908-0
2003-05-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/5/vir841287.html?itemId=/content/journal/jgv/10.1099/vir.0.18908-0&mimeType=html&fmt=ahah

References

  1. Almond N., Jenkins A., Slade A., Heath A., Cranage M., Kitchin P.. 1992; Population sequence analysis of a simian immunodeficiency virus (32H reisolate of SIVmac251): a virus stock used for international vaccine studies. AIDS Res Hum Retroviruses8:77–88
    [Google Scholar]
  2. Andersson S., Norrgren H., da Silva Z., Biague A., Bamba S., Kwok S., Christopherson C., Biberfeld G., Albert J.. 2000; Plasma viral load in HIV-1 and HIV-2 singly and dually infected individuals in Guinea-Bissau, West Africa: significantly lower plasma virus set point in HIV-2 infection than in HIV-1 infection. Arch Intern Med160:3286–3293
    [Google Scholar]
  3. Ariyoshi K., Jaffar S., Alabi A.. 7 other authors 2000; Plasma RNA viral load predicts the rate of CD4 T cell decline and death in HIV-2-infected patients in West Africa. AIDS14:339–344
    [Google Scholar]
  4. Bell I., Ashman C., Maughan J., Hooker E., Cook F., Reinhart T. A.. 1998; Association of simian immunodeficiency virus Nef with the T-cell receptor (TCR) ζ chain leads to TCR down-modulation. J Gen Virol79:2717–2727
    [Google Scholar]
  5. Berry N., Ariyoshi K., Jobe O., N'Gom P. T., Corrah T., Wilkins A., Whittle H., Tedder R.. 1994; HIV type 2 proviral load measured by quantitative polymerase chain reaction correlates with CD4+ lymphopenia in HIV type 2-infected individuals. AIDS Res Hum Retroviruses10:1031–1037
    [Google Scholar]
  6. Berry N. J., Ariyoshi K., Jaffar S., Sabally S., Corrah T., Tedder R., Whittle H.. 1998; Low peripheral blood viral HIV-2 RNA in individuals with high CD4 percentage differentiates HIV-2 from HIV-1 infection. J Hum Virol1:457–468
    [Google Scholar]
  7. Berry N. J., Ariyoshi K., Balfe P., Tedder R., Whittle H.. 2001; Sequence specificity of the human immunodeficiency virus type 2 (HIV-2) long terminal repeat U3 region in vivo allows subtyping of the principal HIV-2 viral subtypes A and B. AIDS Res Hum Retroviruses17:263–267
    [Google Scholar]
  8. Berry N. J., Jaffar S., Schim van der Loeff M.. 9 other authors 2002; Low level viremia and high CD4% predict normal survival in a cohort of HIV type 2-infected villagers. AIDS Res Hum Retroviruses18:1167–1173
    [Google Scholar]
  9. Bock P. J., Markovitz D. M.. 2001; Infection with HIV-2. AIDS15 (suppl. 5):S35–S45
    [Google Scholar]
  10. Bonfield J. K., Smith K. F., Staden R. A.. 1995; A new DNA sequence assembly program. Nucleic Acids Res23:4992–4999
    [Google Scholar]
  11. Boom R., Sol C. J., Salimans M. M., Jansen C. L., Wertheim-van Dillen P. M., van der Noordaa J.. 1990; Rapid and simple methods for purification of nucleic acids. J Clin Microbiol28:495–503
    [Google Scholar]
  12. Bresnahan P. A., Yonemoto W., Greene W. C.. 1999; SIV Nef protein utilizes both leucine- and tyrosine-based protein sorting pathways for down-regulation of CD4. J Immunol163:2977–2981
    [Google Scholar]
  13. Carl S., Iafrate A. J., Lang S., Stolte N., Stahl-Hennig C., Matz-Rensing K., Fuchs D., Skowronski J., Kirchhoff F.. 2000a; Simian immunodeficiency virus containing mutations in N-terminal tyrosine residues and in the PxxP motif in Nef replicates efficiently in rhesus macaques. J Virol74:4155–4164
    [Google Scholar]
  14. Carl S., Daniels R., Iafrate A. J., Easterbrook P., Greenough T. C., Skowronski J., Kirchhoff F.. 2000b; Partial ‘repair’ of defective nef genes in a long-term nonprogressor with human immunodeficiency type 1 infection. J Infect Dis181:132–140
    [Google Scholar]
  15. Chen Z., Luckay A., Sodora D. L.. 9 other authors 1997; Human immunodeficiency virus type 2 (HIV-2) seroprevalence and characterization of a distinct HIV-2 genetic subtype from the natural range of simian immunodeficiency virus-infected sooty mangabeys. J Virol71:3953–3960
    [Google Scholar]
  16. Cheng H., Hoxie J., Parks W. P.. 1999; The conserved core of human immunodeficiency virus type 1 Nef is essential for association with Lck and for enhanced viral replication in T-lymphocytes. Virology264:5–15
    [Google Scholar]
  17. Clark N. M., Hannibal M. C., Markovitz D. M.. 1995; The peri- κ B site mediates human immunodeficiency virus type 2 enhancer activation in monocytes but not in T cells. J Virol69:4854–4862
    [Google Scholar]
  18. Clavel F., Guetard D., Brun-Vezinet F.. 9 other authors 1986; Isolation of a new human retrovirus from West African patients with AIDS. Science233:343–346
    [Google Scholar]
  19. Collette Y.. 1997; Towards a consensus for a role of Nef in both viral replication and immunomodulation. Res Virol148:23–30
    [Google Scholar]
  20. Collette Y., Dutartre H., Benziane A., Ramos-Morales F., Benarous R., Harris M., Olive D.. 1996; Physical and functional interaction of Nef with Lck. HIV-1 Nef-induced T-cell signaling defects. J Biol Chem 71, 6333–6341
    [Google Scholar]
  21. Collette Y., Arold S., Picard C., Janvier K., Benichou S., Benarous R., Olive D., Dumas C.. 2000; HIV-2 and SIV Nef proteins target different Src family SH3 domains than does HIV-1 Nef because of a triple amino acid substitution. J Biol Chem275:4171–4176
    [Google Scholar]
  22. Craig H. M., Pandori M. W., Guatelli J. C.. 1998; Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity. Proc Natl Acad Sci U S A95:11229–11234
    [Google Scholar]
  23. Deacon N. J., Tsykin A., Solomon A.. other authors 1995; Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science270:988–991
    [Google Scholar]
  24. Echarri A., Gonzalez M. E., Carrasco L.. 1997; The N-terminal Arg-rich region of human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus Nef is involved in RNA binding. Eur J Biochem246:38–44
    [Google Scholar]
  25. Fackler O. T., Baur A. S.. 2002; Live and let die: Nef functions beyond HIV replication. Immunity16:493–497
    [Google Scholar]
  26. Fackler O. T., Wolf D., Weber H. O.. 9 other authors 2001; A natural variability in the proline-rich motif of Nef modulates HIV-1 replication in primary T cells. Curr Biol11:1294–1299
    [Google Scholar]
  27. Felsenstein J.. 1989; Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet22:521–565
    [Google Scholar]
  28. Foti M., Mangasarian A., Piguet V., Lew D. P., Krause K.-H., Trono D., Carpentier J.-L.. 1997; Nef-mediated clathrin-coated pit formation. J Cell Biol139:37–47
    [Google Scholar]
  29. Gao F., Yue L., Robertson D. L.. 9 other authors 1994; Genetic diversity of human immunodeficiency virus type 2: evidence for distinct sequence subtypes with differences in virus biology. J Virol68:7433–7447
    [Google Scholar]
  30. Geffin R., Wolf D., Muller R., Hill M. D., Stellwag E., Freitag M., Sass G., Scott G. B., Baur A. S.. 2000; Functional and structural defects in HIV type 1 nef genes derived from pediatric long-term survivors. AIDS Res Hum Retroviruses16:1855–1868
    [Google Scholar]
  31. Geleziunas R., Xu W., Takeda K., Ichijo H., Greene W. C.. 2001; HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature410:834–838
    [Google Scholar]
  32. Geyer M., Fackler O. T., Peterlin B. M.. 2001; Structure–function relationships in HIV-1 Nef. EMBO Rep21:580–585
    [Google Scholar]
  33. Grassly N. C., Xiang Z., Ariyoshi K., Aaby P., Jensen H., van der Loeff M. S., Dias F., Whittle H., Breuer J.. 1998; Mortality among human immunodeficiency virus type 2-positive villagers in rural Guinea-Bissau is correlated with viral genotype. J Virol72:7895–7899
    [Google Scholar]
  34. Greenberg M. E., Bronson S., Lock M., Neumann M., Pavlakis G. N., Skowronski J.. 1997; Co-localization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation. EMBO J16:6964–6976
    [Google Scholar]
  35. Greenway A. L., Dutartre H., Allen K., McPhee D. A., Olive D., Collette Y.. 1999; Simian immunodeficiency virus and human immunodeficiency virus type 1 Nef protein show distinct patterns and mechanisms of Src kinase activation. J Virol73:6152–6158
    [Google Scholar]
  36. Hanna Z., Kay D. G., Rebai N., Guimond A., Jothy S., Jolicoeur P.. 1998; Nef harbours a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell95:163–175
    [Google Scholar]
  37. Hanna Z., Weng X., Kay D. G., Poudrier J., Lowell C., Jolicoeur P.. 2001; The pathogenicity of human immunodeficiency virus (HIV) type 1 Nef in CD4C/HIV transgenic mice is abolished by mutation of its SH3-binding domain, and disease development is delayed in the absence of Hck. J Virol75:9378–9392
    [Google Scholar]
  38. Harris M.. 1995; The role of myristoylation in the interactions between the human immunodeficiency virus type 1 Nef and cellular proteins. Biochem Soc Trans23:557–561
    [Google Scholar]
  39. Jubier-Maurin V., Saragosti S., Perret J.-L.. 7 other authors 1999; Genetic characterization of the nef gene from human immunodeficiency virus type 1 group M strains representing genetic subtypes A, B, C, E, F, G, and H. AIDS Res Hum Retroviruses15:23–32
    [Google Scholar]
  40. Karn T., Hock B., Holtrich U., Adamski M., Strebhardt K., Rubsamen-Waigmann H.. 1998; Nef proteins of distinct HIV-1 or -2 isolates differ in their binding properties for HCK: isolation of a novel Nef binding factor with characteristics of an adaptor protein. Virology246:45–52
    [Google Scholar]
  41. Kestler H. W., III Ringler D. J., Mori K., Panicali D. L., Sehgai P. K., Daniel M. D., Desrosiers R. C.. 1991; Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell65:651–662
    [Google Scholar]
  42. Khan I. H., Sawai E. T., Antonio E., Weber C. J., Mandell C. P., Montbriand P., Luciw P. A.. 1998; Role of the SH3-ligand domain of simian immunodeficiency virus Nef in interaction with Nef-associated kinase and simian AIDS in rhesus macaques. J Virol72:5820–5830
    [Google Scholar]
  43. Kirchhoff F., Easterbrook P. J., Douglas N., Troop M., Greenough T. C., Weber J., Carl S., Sullivan J. L., Daniels R. S.. 1999; Sequence variations in human immunodeficiency virus type 1 Nef are associated with different stages of disease. J Virol73:5497–5508
    [Google Scholar]
  44. Lang S. M., Iafrate A. J., Stahl-Hennig C.. 7 other authors 1997; Association of simian immunodeficiency virus Nef with cellular serine/threonine kinases is dispensable for the development of AIDS in rhesus macaques. Nat Med3:860–865
    [Google Scholar]
  45. Learmont J. C., Geczy A. F., Mills J.. 9 other authors 1999; Immunologic and virologic status after 14 to 18 years of infection with an attenuated strain of HIV-1. N Engl J Med340:1715–1722
    [Google Scholar]
  46. Lee C.-H., Leung B., Lemmon M. A., Zheng J., Cowburn D., Kuriyan J., Saksela K.. 1995; A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. EMBO J14:5006–5015
    [Google Scholar]
  47. Leiden J. R., Wang C.-Y., Petryniak B., Markovitz D. M., Nabel G. J., Thompson C. B.. 1992; A novel Ets-related transcription factor, Elf-1, binds to human immunodeficiency virus type 2 regulatory elements that are required for inducible trans activation in T cells. J Virol66:5890–5897
    [Google Scholar]
  48. Lock M., Greenberg M. E., Iafrate A. J., Swigut T., Muench J., Kirchhoff F., Shohdy N., Skowronski J.. 1999; Two elements target SIV Nef to the AP-2 clathrin adaptor complex, but only one is required for the induction of CD4 endocytosis. EMBO J18:2722–2733
    [Google Scholar]
  49. Luo W., Peterlin M.. 1997; Activation of the T-cell receptor signaling pathway by Nef from an aggressive strain of simian immunodeficiency virus. J Virol71:9531–9537
    [Google Scholar]
  50. Mangasarian A., Piguet V., Wang J.-K., Chen Y.-L., Trono D.. 1999; Nef-induced CD4 and major histocompatibility complex class I (MHC-I) down-regulation are governed by distinct determinants: N-terminal α helix and proline repeat of Nef selectively regulate MHC-I trafficking. J Virol73:1964–1973
    [Google Scholar]
  51. Manninen A., Hiipakka M., Vihinen M., Lu W., Mayer B. J., Saksela K.. 1998; SH3-domain binding function of HIV-1 Nef is required for association with a PAK-related kinase. Virology250:273–282
    [Google Scholar]
  52. Markovitz D., Smith M., Hilfinger J., Hannibal M. C., Petryniak B., Nabel G. J.. 1992; Activation of the human immunodeficiency virus type 2 enhancer is dependent on purine box and κ B regulatory elements. J Virol66:5479–5484
    [Google Scholar]
  53. Marlink R., Kanki P., Thior I.. other authors 1994; Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science265:1587–1590
    [Google Scholar]
  54. Michael N. L., Chang G., d'Arcy L., Ehrenberg P. K., Mariani R., Busch M. P., Birx D. L., Schwartz D. H.. 1995; Defective accessory genes in a human immunodeficiency virus type-1-infected long-term survivor lacking recoverable virus. J Virol69:4228–4236
    [Google Scholar]
  55. Michel P., Balde A. T., Roussilhon C., Aribot G., Sarthou J.-L., Gougeon M.-L.. 2000; Reduced immune activation and T cell apoptosis in human immunodeficiency virus type 2 compared with type 1: correlation of T cell apoptosis with β 2 microglobulin concentration and disease evolution. J Infect Dis181:64–75
    [Google Scholar]
  56. Mourich D. V., Lee S., Reyes-Teran G., Mackewicz C. E., Levy J. A.. 1999; Lack of differences in nef alleles among HIV-infected asymptomatic long-term survivors and those who progressed to disease. AIDS Res Hum Retroviruses15:1573–1575
    [Google Scholar]
  57. National AIDS Commission. 2002; HIV/AIDS infection, situation in Portugal at 30 June 2002doc–128 National Institute of Health; Lisbon, Portugal: CVEDT;
    [Google Scholar]
  58. Pieniazek D., Ellenberger D., Janini L. M.. 11 other authors 1999; Predominance of human immunodeficiency virus type 2 subtype B in Abidjan, Ivory Coast. AIDS Res Hum Retroviruses15:603–608
    [Google Scholar]
  59. Piguet V., Trono D.. 1999; The Nef protein of primate lentiviruses. Rev Med Virol9:111–120
    [Google Scholar]
  60. Piguet V., Chen Y.-L., Mangasarian A., Foti M., Carpentier J.-L., Trono D.. 1998; Mechanisms of Nef-induced CD4 endocytosis: Nef connects CD4 with the mu chain of adaptor complexes. EMBO J17:2472–2481
    [Google Scholar]
  61. Piguet V., Gu F., Foti M., Demaurex N., Gruenberg J., Carpentier J.-L., Trono D.. 1999; Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of β -COP in endosomes. Cell97:63–73
    [Google Scholar]
  62. Popper S. J., Sarr A. D., Travers K. U., Gueye-Ndiaye A., Mboup S., Essex M. E., Kanki P. J.. 1999; Lower human immunodeficiency (HIV) type 2 viral load reflects the difference in pathogenicity of HIV-1 and HIV-2. J Infect Dis180:1116–1121
    [Google Scholar]
  63. Poulsen A. G., Aaby P., Larsen O., Jensen H., Naucler A., Lisse I. M., Christiansen C. B., Dias F., Melbye M.. 1997; 9-year HIV-2-associated mortality in an urban community in Bissau, west Africa. Lancet349:911–914
    [Google Scholar]
  64. Reeves J. D., Doms R. W.. 2002; Human immunodeficiency virus type 2. J Gen Virol83:1253–1265
    [Google Scholar]
  65. Saksela K., Cheng G., Baltimore D.. 1995; Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J14:484–491
    [Google Scholar]
  66. Schim van der Loeff M. F., Aaby P.. 1999; Towards a better understanding of the epidemiology of HIV-2. AIDS13 (suppl. A):S69–S84
    [Google Scholar]
  67. Schulz T. F., Whitby D., Hoad J. G., Corrah T., Whittle H., Weiss R. A.. 1990; Biological and molecular variability of human immunodeficiency virus type 2 isolates from The Gambia. J Virol64:5177–5182
    [Google Scholar]
  68. Shankarappa R., Margolick J. B., Gange S. J.. 9 other authors 1999; Consistence viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol73:10489–10502
    [Google Scholar]
  69. Simmons A., Aluvihare V., McMichael A.. 2001; Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity14:763–777
    [Google Scholar]
  70. Simon F., Matheron S., Tamalet C.. 9 other authors 1993; Cellular and plasma viral load in patients infected with HIV-2. AIDS7:1411–1417
    [Google Scholar]
  71. Soriano V., Gomes P., Heneine W.. 10 other authors 2000; Human immunodeficiency virus type 2 (HIV-2) in Portugal: clinical spectrum, circulating subtypes, virus isolation and plasma viral load. J Med Virol61:111–116
    [Google Scholar]
  72. Switzer W. M., Wiktor S., Soriano V.. 7 other authors 1998; Evidence of Nef truncation in human immunodeficiency virus type 2 infection. J Infect Dis177:65–71
    [Google Scholar]
  73. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  74. Whatmore A. M., Cook N., Hall G. A., Sharpe S., Rud E. W., Cranage M. P.. 1995; Repair and evolution of nef in vivo modulates simian immunodeficiency virus virulence. J Virol69:5117–5123
    [Google Scholar]
  75. Whittle H. A., Morris J., Todd J., Corrah T., Sabally S., Bangali J., N'Gom P. T., Rolfe M., Wilkins A.. 1994; HIV-2-infected patients survive longer than HIV-1-infected patients. AIDS8:1617–1620
    [Google Scholar]
  76. Whittle H. C., Ariyoshi K., Rowland-Jones S.. 1998; HIV-2 and T cell recognition. Curr Opin Immunol10:382–387
    [Google Scholar]
  77. Wolf D., Witte V., Laffert B., Blume K., Stromer E., Trapp S., d'Aloja P., Schurmann A., Baur A. S.. 2001; HIV-1 Nef associated PAK and P13-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat Med7:1217–1224
    [Google Scholar]
  78. Yamaguchi J., Devare S. G., Brennan C.. 2000; Identification of a new HIV-2 subtype based on phylogenetic analysis of full-length genomic sequence. AIDS Res Hum Retroviruses9:925–930
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18908-0
Loading
/content/journal/jgv/10.1099/vir.0.18908-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error