1887

Abstract

Measles virus (MV) infects endothelial cells of the skin, the brain and other organs during acute or persistent infections. Endothelial cells are supposed to play an important role in virus spread from the blood stream to surrounding tissues. CD46 and CD150 (signalling lymphocytic activation molecule, SLAM) have been described as cellular receptors for certain MV strains. We found that human umbilical vein and brain microvascular endothelial cells (HUVECs and HBMECs) were CD46-positive, but did not express SLAM. Wild-type MV strains, which do not use CD46 as a receptor at the surface of transfected Chinese hamster ovary cells, infected HUVECs and HBMECs to varying extents in a strain-dependent way. This infection was not inhibited by antibodies to CD46. These data suggest the presence of an additional unidentified receptor for MV uptake and spread in human endothelial cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18877-0
2003-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/5/vir841189.html?itemId=/content/journal/jgv/10.1099/vir.0.18877-0&mimeType=html&fmt=ahah

References

  1. Allen, I. V., McQuaid, S., McMahon, J., Kirk, J. & McConnell, R. ( 1996; ). The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. J Neuropathol Exp Neurol 55, 471–480.[CrossRef]
    [Google Scholar]
  2. Bartz, R., Brinckmann, U., Dunster, L. M., Rima, B., Ter Meulen, V. & Schneider-Schaulies, J. ( 1996; ). Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation. Virology 224, 334–337.[CrossRef]
    [Google Scholar]
  3. Bieback, K., Lien, E., Klagge, I. & 7 other authors ( 2002; ). The hemagglutinin protein of wildtype measles virus activates Toll-like receptor 2 signaling. J Virol 76, 8729–8736.[CrossRef]
    [Google Scholar]
  4. Cocks, B. G., Chang, C.-C. J., Carballido, J. M., Yssel, H., de Vries, J. E. & Aversa, G. ( 1995; ). A novel receptor involved in T-cell activation. Nature 376, 260–263.[CrossRef]
    [Google Scholar]
  5. Cosby, S. L. & Brankin, B. ( 1995; ). Measles virus infection of cerebral endothelial cells and effect on their adhesive properties. Vet Microbiol 44, 135–139.[CrossRef]
    [Google Scholar]
  6. Dörig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. ( 1993; ). The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305.[CrossRef]
    [Google Scholar]
  7. Duprex, W. P., McQuaid, S., Hangartner, L., Billeter, M. A. & Rima, B. K. ( 1999; ). Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 73, 9568–9575.
    [Google Scholar]
  8. Erlenhoefer, C., Wurzer, W. J., Löffler, S., Schneider-Schaulies, S., ter Meulen, V. & Schneider-Schaulies, J. ( 2001; ). CD150 (SLAM) is a receptor for measles virus, but is not involved in viral contact-mediated proliferation inhibition. J Virol 75, 4499–4505.[CrossRef]
    [Google Scholar]
  9. Erlenhoefer, C., Duprex, W. P., Rima, B. K., ter Meulen, V. & Schneider-Schaulies, J. ( 2002; ). Analysis of receptor (CD46, CD150) usage by measles virus. J Gen Virol 83, 1431–1436.
    [Google Scholar]
  10. Esolen, L. M., Takahashi, K., Johnson, R. T., Vaisberg, A., Moench, T. R., Wesselingh, S. L. & Griffin, D. E. ( 1995; ). Brain endothelial cell infection in children with acute fatal measles. J Clin Invest 96, 2478–2481.[CrossRef]
    [Google Scholar]
  11. Faure, E., Thomas, L., Xu, H., Medvedev, A. E., Equils, O. & Arditi, M. ( 2001; ). Bacterial lipopolysaccharide and IFN-γ induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kB activation. J Immunol 166, 2018–2024.[CrossRef]
    [Google Scholar]
  12. Friedman, H. M., Macarak, E. J., MacGregor, R. R., Wolfe, J. & Kefalides, N. A. ( 1981; ). Virus infection of endothelial cells. J Infect Dis 143, 266–273.[CrossRef]
    [Google Scholar]
  13. Griffin, D. E. & Bellini, W. J. ( 1996; ). Measles virus. In Fields Virology, 3rd edn, pp. 1267–1312. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  14. Harcourt, B. H., Rota, P. R., Hummel, K. B., Bellini, W. J. & Offermann, M. K. ( 1999; ). Induction of intercellular adhesion molecule 1 gene expression by measles virus in human umbilical vein endothelial cells. J Med Virol 57, 9–16.[CrossRef]
    [Google Scholar]
  15. Hashimoto, K., Ono, N., Tatsuo, H., Minagawa, H., Takeda, M., Takeuchi, K. & Yanagi, Y. ( 2002; ). SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J Virol 76, 6743–6749.[CrossRef]
    [Google Scholar]
  16. Hsu, E. C., Sarangi, F., Iorio, C. & 7 other authors ( 1998; ). A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. J Virol 72, 2905–2916.
    [Google Scholar]
  17. Hsu, E. C., Iorio, C., Sarangi, F., Khine, A. A. & Richardson, C. D. ( 2001; ). CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279, 9–21.[CrossRef]
    [Google Scholar]
  18. Isaacson, S. H., Asher, D. M., Godec, M. S., Gibbs, C. J. & Gajdusek, D. C. ( 1996; ). Widespread, restricted low-level measles virus infection of brain in a case of subacute sclerosing panencephalitis. Acta Neuropathol 91, 135–139.[CrossRef]
    [Google Scholar]
  19. Johnston, I. C. D., ter Meulen, V., Schneider-Schaulies, J. & Schneider-Schaulies, S. ( 1999; ). A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism. J Virol 73, 6903–6915.
    [Google Scholar]
  20. Kimura, A., Tosaka, K. & Nakao, T. ( 1975; ). Measles rash I. Light and electron microscopic study of skin eruptions. Arch Virol 47, 295–307.[CrossRef]
    [Google Scholar]
  21. Kirk, J., Zhou, A. L., McQuaid, S., Cosby, S. L. & Allen, I. V. ( 1991; ). Cerebral endothelial cell infection by measles virus in subacute sclerosing panencephalitis: ultrastructural and in situ hybridization evidence. Neuropathol Appl Neurobiol 17, 289–297.[CrossRef]
    [Google Scholar]
  22. Kobune, F., Sakata, H. & Sugiura, A. ( 1990; ). Marmoset lymphoblastoid cell as a sensitive host for isolation of measles virus. J Virol 64, 700–705.
    [Google Scholar]
  23. Koumomou, D. W. & Wild, T. F. ( 2002; ). Adaptation of wild-type measles virus to tissue culture. J Virol 76, 1505–1509.[CrossRef]
    [Google Scholar]
  24. Krantic, S., Gimenez, C. & Rabourdin-Combe, C. ( 1995; ). Cell-to-cell contact via measles virus haemagglutinin–CD46 interaction triggers CD46 downregulation. J Gen Virol 76, 2793–2800.[CrossRef]
    [Google Scholar]
  25. Kruse, M., Meinl, E., Henning, G., Kuhnt, C., Berchtold, S., Berger, T., Schuler, G. & Steinkasserer, A. ( 2001; ). Signaling lymphocytic activation molecule is expressed on mature CD83+ dendritic cells and is up-regulated by IL-1b. J Immunol 167, 1989–1995.[CrossRef]
    [Google Scholar]
  26. Lawrence, D. M. P., Patterson, C. E., Gales, T. L., D'Orazio, J. L., Vaughn, M. M. & Rall, G. F. ( 2000; ). Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. J Virol 74, 1908–1918.[CrossRef]
    [Google Scholar]
  27. Lecouturier, V., Fayolle, J., Caballero, M., Carabana, J., Celma, M. L., Fernandez-Munoz, R., Wild, T. F. & Buckland, R. ( 1996; ). Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. J Virol 70, 4200–4204.
    [Google Scholar]
  28. McQuaid, S. & Cosby, S. L. ( 2002; ). An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab Investig 82, 1–7.[CrossRef]
    [Google Scholar]
  29. McQuaid, S., Campbell, S., Wallace, I. J., Kirk, J. & Cosby, S. L. ( 1998; ). Measles virus infection and replication in undifferentiated and differentiated human neuronal cells in culture. J Virol 72, 5245–5250.
    [Google Scholar]
  30. Manchester, M., Eto, D. S., Valsamakis, A., Liton, P. B., Fernandez-Munoz, R., Rota, P. A., Bellini, W. J., Forthal, D. N. & Oldstone, M. B. A. ( 2000; ). Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74, 3967–3974.[CrossRef]
    [Google Scholar]
  31. Marin, V., Kaplanski, G., Grès, S., Farnarier, C. & Bongrand, P. ( 2001; ). Endothelial cell culture: protocol to obtain and cultivate human umbilical endothelial cells. J Immunol Methods 254, 183–190.[CrossRef]
    [Google Scholar]
  32. Meissner, N. N. & Koschel, K. ( 1995; ). Downregulation of endothelin receptor mRNA synthesis in C6 rat astrocytoma cells by persistent measles virus and canine distemper virus infections. J Virol 69, 5191–5194.
    [Google Scholar]
  33. Minagawa, H., Tanaka, K., Ono, N., Tatsuo, H. & Yanagi, Y. ( 2001; ). Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 82, 2913–2917.
    [Google Scholar]
  34. Moeller, K., Duffy, I., Duprex, P. & 7 other authors ( 2001; ). Recombinant measles viruses expressing altered hemagglutinin (H) genes: functional separation of mutations determining H antibody escape from neurovirulence. J Virol 75, 7612–7620.[CrossRef]
    [Google Scholar]
  35. Moench, T. R., Griffin, D. E., Obriecht, C. R., Vaisberg, A. J. & Johnson, R. T. ( 1988; ). Acute measles in patients with and without neurological involvement: distribution of measles virus antigen and RNA. J Infect Dis 158, 433–442.[CrossRef]
    [Google Scholar]
  36. Moll, M., Klenk, H.-D., Herrlerr, G. & Maisner, A. ( 2001; ). A single amino acid change in the cytoplasmic domains of measles virus glycoproteins H and F alters targeting, endocytosis, and cell fusion in polarized Madin–Darby canine kidney cells. J Biol Chem 276, 17887–17894.[CrossRef]
    [Google Scholar]
  37. Naniche, D., Varior-Krishnan, G., Cervoni, F., Wild, T. F., Rossi, B., Rabourdin-Combe, C. & Gerlier, D. ( 1993a; ). Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67, 6025–6032.
    [Google Scholar]
  38. Naniche, D., Wild, T. F., Rabourdin-Combe, C. & Gerlier, D. ( 1993b; ). Measles virus haemagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. J Gen Virol 74, 1073–1079.[CrossRef]
    [Google Scholar]
  39. Nielsen, L., Blixenkrone-Moller, M., Thylstrup, M., Hansen, N. J. V. & Bolt, G. ( 2001; ). Adaptation of wild-type measles virus to CD46 receptor usage. Arch Virol 146, 197–208.[CrossRef]
    [Google Scholar]
  40. Ogata, A., Czub, S., Ogata, S., Cosby, S. L., McQuaid, S., Budka, H., ter Meulen, V. & Schneider-Schaulies, J. ( 1997; ). Absence of measles virus receptor (CD46) in lesions of subacute sclerosing panencephalitis brains. Acta Neuropathol 94, 444–449.[CrossRef]
    [Google Scholar]
  41. Ohgimoto, S., Ohgimoto, K., Niewiesk, S. & 7 other authors ( 2001; ). The hemagglutinin protein is an important determinant for measles virus tropism for dendritic cells in vitro and immunosuppression in vivo. J Gen Virol 82, 1835–1844.
    [Google Scholar]
  42. Ono, N., Tatsuo, H., Hidaka, Y., Aoki, T., Minagawa, H. & Yanagi, Y. ( 2001a; ). Measles virus on throat swabs from measles patients use signalling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75, 4399–4401.[CrossRef]
    [Google Scholar]
  43. Ono, N., Tatsuo, H., Tanaka, K., Minagawa, H. & Yanagi, Y. ( 2001b; ). V domain of human SLAM (CDw150) is essential for its function as a measles virus receptor. J Virol 75, 1594–1600.[CrossRef]
    [Google Scholar]
  44. Plemper, R., Hammond, A. L., Gerlier, D., Fielding, A. K. & Cattaneo, R. ( 2002; ). Strength of envelope protein interaction modulates cytopathicity of measles virus. J Virol 76, 5051–5061.[CrossRef]
    [Google Scholar]
  45. Polacino, P. S., Pinchuk, L. M., Sidorenko, S. P. & Clark, E. A. ( 1996; ). Immunodeficiency virus cDNA synthesis in resting T lymphocytes is regulated by T cell activation signals and dendritic cells. J Med Primatol 25, 201–209.[CrossRef]
    [Google Scholar]
  46. Punnonen, J., Cocks, B. G., Carballido, J. M., Bennett, B., Peterson, D., Aversa, G. & de Vries, J. ( 1997; ). Soluble and membrane-bound forms of signalling lymphocytic activation molecule (SLAM) induce proliferation and Ig synthesis by activated human B lymphocytes. J Exp Med 185, 993–1004.[CrossRef]
    [Google Scholar]
  47. Schneider-Schaulies, J., Dunster, L. M., Kobune, F., Rima, B. & ter Meulen, V. ( 1995a; ). Differential downregulation of CD46 by measles virus strains. J Virol 69, 7257–7259.
    [Google Scholar]
  48. Schneider-Schaulies, J., Schnorr, J. J., Brinckmann, U., Dunster, L. M., Baczko, K., Liebert, U. G., Schneider-Schaulies, S. & ter Meulen, V. ( 1995b; ). Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proc Natl Acad Sci U S A 92, 3943–3947.[CrossRef]
    [Google Scholar]
  49. Schneider-Schaulies, J., Schnorr, J. J., Schlender, J., Dunster, L. M., Schneider-Schaulies, S. & ter Meulen, V. ( 1996; ). Receptor (CD46) modulation and complement-mediated lysis of uninfected cells after contact with measles virus-infected cells. J Virol 70, 255–263.
    [Google Scholar]
  50. Shibahara, K., Hotta, H., Katayama, Y. & Homma, M. ( 1994; ). Increased binding activity of measles virus to monkey red blood cells after long-term passage in Vero cell cultures. J Gen Virol 75, 3511–3516.[CrossRef]
    [Google Scholar]
  51. Soilu-Hanninen, M., Hanninen, A., Ilonen, J., Salmi, A. & Salonen, R. ( 1996; ). Measles virus hemagglutinin mediates monocyte aggregation and increased adherence to measles-infected endothelial cells. Med Microbiol Immunol 185, 73–80.[CrossRef]
    [Google Scholar]
  52. Stins, F. M., Gilles, F. & Kim, K. S. ( 1997; ). Selective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol 76, 81–90.[CrossRef]
    [Google Scholar]
  53. Takeuchi, K., Takeda, M., Miyajima, N., Kobune, F., Tanabyashi, K. & Tashiro, M. ( 2002; ). Recombinant wild-type and Edmonston strain measles viruses bearing heterologous H proteins: role of H protein in cell fusion and host cell specificity. J Virol 76, 4891–4900.[CrossRef]
    [Google Scholar]
  54. Tanaka, K., Minagawa, H., Xie, M.-F. & Yanagi, Y. ( 2002; ). The measles virus hemagglutinin downregulates the cellular receptor SLAM (CD150). Arch Virol 147, 195–203.[CrossRef]
    [Google Scholar]
  55. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. ( 2000; ). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897.[CrossRef]
    [Google Scholar]
  56. Urbanska, E. M., Chambers, B. J., Ljunggren, H. G., Norrby, E. & Kristensson, K. ( 1997; ). Spread of measles virus through axonal pathways into limbic structures in the brain of Tab −/− mice. J Med Virol 52, 362–369.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18877-0
Loading
/content/journal/jgv/10.1099/vir.0.18877-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error