1887

Abstract

Yellow fever virus (YF) is the prototype member of the genus. Here, we report the successful construction of a full-length infectious cDNA clone of the vaccine strain YF-17D. YF cDNA was cloned into a low-copy-number plasmid backbone and stably maintained in several . strains. Transcribed RNAs had a specific infectivity of 10–10 p.f.u. (μg RNA), and the resulting virus exhibited growth kinetics, plaque morphology and proteolytic processing similar to the parental virus in cell culture. This clone was used to analyse the importance of conserved flavivirus RNA sequences and the 3′ stem–loop structure in virus replication. The conserved sequences 5′CS and CS1, as well as the 3′ stem–loop structure, were found to be essential for virus replication in cell culture, whereas the conserved sequence CS2 and the region containing YF-specific repeated sequences were dispensable. This infectious clone will aid future studies on YF replication and pathogenesis, as well as facilitate the development of YF-17D-based recombinant vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18860-0
2003-05-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/5/vir841261.html?itemId=/content/journal/jgv/10.1099/vir.0.18860-0&mimeType=html&fmt=ahah

References

  1. Amberg, S. M. & Rice, C. M. ( 1999; ). Mutagenesis of the NS2B–NS3-mediated cleavage site in the flavivirus capsid protein demonstrates a requirement for coordinated processing. J Virol 73, 8083–8094.
    [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) ( 2000; ). Current Protocols in Molecular Biology. New York: John Wiley.
  3. Blackwell, J. L. & Brinton, M. A. ( 1997; ). Translation elongation factor-1 alpha interacts with the 3′ stem–loop region of West Nile virus genomic RNA. J Virol 71, 6433–6444.
    [Google Scholar]
  4. Boyer, J. C. & Haenni, A. L. ( 1994; ). Infectious transcripts and cDNA clones of RNA viruses. Virology 198, 415–426.[CrossRef]
    [Google Scholar]
  5. Bredenbeek, P. J., Frolov, I., Rice, C. M. & Schlesinger, S. ( 1993; ). Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J Virol 67, 6439–6446.
    [Google Scholar]
  6. Brinton, M. A., Fernandez, A. V. & Dispoto, J. H. ( 1986; ). The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153, 113–121.[CrossRef]
    [Google Scholar]
  7. Burke, D. S. & Monath, T. P. ( 2001; ). Flaviviruses. In Fields Virology, 4th edn, pp. 1043–1125. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams & Wilkins.
  8. Der Most, R. G., Murali-Krishna, K., Ahmed, R. & Strauss, J. H. ( 2000; ). Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific CD8 T-cell response. J Virol 74, 8094–8101.[CrossRef]
    [Google Scholar]
  9. Grakoui, A., Levis, R., Raju, R., Huang, H. V. & Rice, C. M. ( 1989; ). A cis-acting mutation in the Sindbis virus junction region which affects subgenomic RNA synthesis. J Virol 63, 5216–5227.
    [Google Scholar]
  10. Hahn, C. S., Hahn, Y. S., Rice, C. M., Lee, E., Dalgarno, L., Strauss, E. G. & Strauss, J. H. ( 1987; ). Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198, 33–41.[CrossRef]
    [Google Scholar]
  11. Hurrelbrink, R. J., Nestorowicz, A. & McMinn, P. C. ( 1999; ). Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA. J Gen Virol 80, 3115–3125.
    [Google Scholar]
  12. Khromykh, A. A. & Westaway, E. G. ( 1997; ). Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 71, 1497–1505.
    [Google Scholar]
  13. Khromykh, A. A., Meka, H., Guyatt, K. J. & Westaway, E. G. ( 2001; ). Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75, 6719–6728.[CrossRef]
    [Google Scholar]
  14. Kummerer, B. M. & Rice, C. M. ( 2002; ). Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J Virol 76, 4773–4784.[CrossRef]
    [Google Scholar]
  15. Kunkel, T. A. ( 1985; ). Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82, 488–492.[CrossRef]
    [Google Scholar]
  16. Landt, O., Grunert, H. P. & Hahn, U. ( 1990; ). A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96, 125–128.[CrossRef]
    [Google Scholar]
  17. Lindenbach, B. D. & Rice, C. M. ( 1997; ). Trans-complementation of yellow fever virus NS1 reveals a role in early RNA replication. J Virol 71, 9608–9617.
    [Google Scholar]
  18. Lindenbach, B. D. & Rice, C. M. ( 1999; ). Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73, 4611–4621.
    [Google Scholar]
  19. Lindenbach, B. D. & Rice, C. M. ( 2001; ). Flaviviridae: The viruses and their replication. In Fields Virology, 4th edn, pp. 991–1041. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams & Wilkins.
  20. McAllister, A., Arbetman, A. E., Mandl, S., Pena-Rossi, C. & Andino, R. ( 2000; ). Recombinant yellow fever viruses are effective therapeutic vaccines for treatment of murine experimental solid tumors and pulmonary metastases. J Virol 74, 9197–9205.[CrossRef]
    [Google Scholar]
  21. Mackenzie, J. M., Khromykh, A. A. & Westaway, E. G. ( 2001; ). Stable expression of noncytopathic Kunjin replicons simulates both ultrastructural and biochemical characteristics observed during replication of Kunjin virus. Virology 279, 161–172.[CrossRef]
    [Google Scholar]
  22. Mandl, C. W., Ecker, M., Holzmann, H., Kunz, C. & Heinz, F. X. ( 1997; ). Infectious cDNA clones of tick-borne encephalitis virus European subtype prototypic strain Neudoerfl and high virulence strain Hypr. J Gen Virol 78, 1049–1057.
    [Google Scholar]
  23. Men, R., Bray, M., Clark, D., Chanock, R. M. & Lai, C. J. ( 1996; ). Dengue type 4 virus mutants containing deletions in the 3′ noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J Virol 70, 3930–3937.
    [Google Scholar]
  24. Mendez, E., Ruggli, N., Collett, M. S. & Rice, C. M. ( 1998; ). Infectious bovine viral diarrhea virus (strain NADL) RNA from stable cDNA clones: a cellular insert determines NS3 production and viral cytopathogenicity. J Virol 72, 4737–4745.
    [Google Scholar]
  25. Monath, T. P. ( 2001; ). Prospects for development of a vaccine against the West Nile virus. Ann N Y Acad Sci 951, 1–12.
    [Google Scholar]
  26. Monath, T. P. ( 2002; ). Japanese encephalitis vaccines: current vaccines and future prospects. Curr Top Microbiol Immunol 267, 105–138.
    [Google Scholar]
  27. Olsthoorn, R. C. & Bol, J. F. ( 2001; ). Sequence comparison and secondary structure analysis of the 3′ noncoding region of flavivirus genomes reveals multiple pseudoknots. RNA 7, 1370–1377.
    [Google Scholar]
  28. Proutski, V., Gould, E. A. & Holmes, E. C. ( 1997a; ). Secondary structure of the 3′ untranslated region of flaviviruses: similarities and differences. Nucleic Acids Res 25, 1194–1202.[CrossRef]
    [Google Scholar]
  29. Proutski, V., Gaunt, M. W., Gould, E. A. & Holmes, E. C. ( 1997b; ). Secondary structure of the 3′-untranslated region of yellow fever virus: implications for virulence, attenuation and vaccine development. J Gen Virol 78, 1543–1549.
    [Google Scholar]
  30. Proutski, V., Gritsun, T. S., Gould, E. A. & Holmes, E. C. ( 1999; ). Biological consequences of deletions within the 3′-untranslated region of flaviviruses may be due to rearrangements of RNA secondary structure. Virus Res 64, 107–123.[CrossRef]
    [Google Scholar]
  31. Rauscher, S., Flamm, C., Mandl, C. W., Heinz, F. X. & Stadler, P. F. ( 1997; ). Secondary structure of the 3′-noncoding region of flavivirus genomes: comparative analysis of base pairing probabilities. RNA 3, 779–791.
    [Google Scholar]
  32. Rice, C. M., Lenches, E. M., Eddy, S. R., Shin, S. J., Sheets, R. L. & Strauss, J. H. ( 1985; ). Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229, 726–733.[CrossRef]
    [Google Scholar]
  33. Rice, C. M., Levis, R., Strauss, J. H. & Huang, H. V. ( 1987; ). Production of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J Virol 61, 3809–3819.
    [Google Scholar]
  34. Rice, C. M., Grakoui, A., Galler, R. & Chambers, T. J. ( 1989; ). Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. Nat New Biol 1, 285–296.
    [Google Scholar]
  35. Ruggli, N. & Rice, C. M. ( 1999; ). Functional cDNA clones of the Flaviviridae: strategies and applications. Adv Virus Res 53, 183–207.
    [Google Scholar]
  36. Ruggli, N., Tratschin, J. D., Mittelholzer, C. & Hofmann, M. A. ( 1996; ). Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol 70, 3478–3487.
    [Google Scholar]
  37. Sambrook, J., Fritsch, T. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Schlesinger, J. J., Brandriss, M. W. & Monath, T. P. ( 1983; ). Monoclonal antibodies distinguish between wild and vaccine strains of yellow fever virus by neutralization, hemagglutination inhibition, and immune precipitation of the virus envelope protein. Virology 125, 8–17.[CrossRef]
    [Google Scholar]
  39. Shi, P. Y., Brinton, M. A., Veal, J. M., Zhong, Y. Y. & Wilson, W. D. ( 1996; ). Evidence for the existence of a pseudoknot structure at the 3′ terminus of the flavivirus genomic RNA. Biochemistry 35, 4222–4230.[CrossRef]
    [Google Scholar]
  40. Wengler, G. & Castle, E. ( 1986; ). Analysis of structural properties which possibly are characteristic for the 3′-terminal sequence of the genome RNA of flaviviruses. J Gen Virol 67, 1183–1188.[CrossRef]
    [Google Scholar]
  41. You, S., Falgout, B., Markoff, L. & Padmanabhan, R. ( 2001; ). In vitro RNA synthesis from exogenous dengue viral RNA templates requires long range interactions between 5′- and 3′-terminal regions that influence RNA structure. J Biol Chem 276, 15581–15591.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18860-0
Loading
/content/journal/jgv/10.1099/vir.0.18860-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error