1887

Abstract

A novel, experimental subunit human immunodeficiency virus (HIV) vaccine, SFV.HIVA, was constructed. This consists of Semliki Forest virus (SFV), which is a suitable vaccine vector for use in humans, and a passenger gene encoding HIVA, which is an immunogen derived from HIV-1 clade A that is being currently tested in clinical trials of combined DNA- and modified vaccinia virus Ankara (MVA)-vectored vaccines in Oxford (UK) and Nairobi (Kenya). In the mouse, the SFV.HIVA vaccine was highly immunogenic for T cell-mediated immune responses and induced T cell memory that lasted for at least 6 months. SFV.HIVA was also compared to the vaccines currently used in the clinical trials and was shown to be as effective in T cell induction as pTHr.HIVA DNA but less immunogenic than MVA.HIVA. When tested in a prime–boost regimen, SFV.HIVA-induced responses could be boosted by MVA.HIVA. This work is a part of a long-term effort to build a panel of subunit vaccines expressing a common immunogen, which will allow both a direct comparison of various vaccine vectors and combined vaccination regimens in humans and provide more flexibility and/or a potential optimization of vaccinations for individuals based on their pre-existing anti-vector immunity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18738-0
2003-02-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/2/vir840361.html?itemId=/content/journal/jgv/10.1099/vir.0.18738-0&mimeType=html&fmt=ahah

References

  1. Allen, T. M., Vogel, T. U., Fuller, D. H. & 11 other authors ( 2000; ). Induction of AIDS virus-specific CTL activity in fresh, unstimulated peripheral blood lymphocytes from rhesus macaques vaccinated with a DNA prime/modified vaccinia virus Ankara boost regimen. J Immunol 164, 4968–4978.[CrossRef]
    [Google Scholar]
  2. Altman, J. D., Moss, P. A. H., Goulder, P. J., Barouch, D. H., McHeyzer-Williams, M. G., Bell, J. I., McMichael, A. J. & Davis, M. M. ( 1996; ). Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96.[CrossRef]
    [Google Scholar]
  3. Amara, R. R., Villinger, F., Altman, J. D. & 19 other authors ( 2001; ). Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292, 69–74.[CrossRef]
    [Google Scholar]
  4. Atkins, G. J., Sheahan, B. J. & Liljeström, P. ( 1999; ). The molecular pathogenesis of Semliki Forest virus: a model virus made useful? J Gen Virol 80, 2287–2297.
    [Google Scholar]
  5. Berglund, P., Quesada-Rolander, M., Putkonen, P., Biberfeld, G., Thorstensson, R. & Liljeström., P. ( 1997; ). Outcome of immunization of cynomolgus monkeys with recombinant Semliki Forest virus encoding human immunodeficiency virus type 1 envelope protein and challenge with a high dose of SHIV-4 virus. AIDS Res Hum Retroviruses 13, 1487–1495.[CrossRef]
    [Google Scholar]
  6. Borrow, P., Lewicki, H., Hahn, B. H., Shaw, G. M. & Oldstone, M. B. ( 1994; ). Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 68, 6103–6110.
    [Google Scholar]
  7. Borrow, P., Lewicki, H., Wei, X. & 8 other authors ( 1997; ). Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 3, 205–211.[CrossRef]
    [Google Scholar]
  8. Fleeton, M. N., Sheahan, B. J., Gould, E. A., Atkins, G. J. & Liljeström, P. ( 1999; ). Recombinant Semliki Forest virus particles encoding the prME or NS1 proteins of louping ill virus protect mice from lethal challenge. J Gen Virol 80, 1189–1198.
    [Google Scholar]
  9. Fleeton, M. N., Liljeström, P., Sheahan, B. J. & Atkins, G. J. ( 2000; ). Recombinant Semliki Forest virus particles expressing louping ill virus antigens induce a better protective response than plasmid-based DNA vaccines or an inactivated whole particle vaccine. J Gen Virol 81, 749–758.
    [Google Scholar]
  10. Garboczi, D. N., Hung, D. T. & Wiley, D. C. ( 1992; ). HLA-A2–peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc Natl Acad Sci U S A 89, 3429–3433.[CrossRef]
    [Google Scholar]
  11. Goulder, P. J. R., Phillips, R. E., Colbert, R. A. & 9 other authors ( 1997; ). Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med 3, 212–217.[CrossRef]
    [Google Scholar]
  12. Haas, G., Plikat, U., Debre, P. & 10 other authors ( 1996; ). Dynamics of viral variants in HIV-1 Nef and specific cytotoxic T lymphocytes in vivo. J Immunol 157, 4212–4221.
    [Google Scholar]
  13. Hanke, T. ( 2001; ). Prospect of a prophylactic vaccine for HIV. Br Med Bull 58, 205–218.[CrossRef]
    [Google Scholar]
  14. Hanke, T. & McMichael, A. J. ( 2000; ). Design and construction of an experimental HIV-1 vaccine for a year – 2000 clinical trial in Kenya. Nat Med 6, 951–955.[CrossRef]
    [Google Scholar]
  15. Hanke, T., Blanchard, T. J., Schneider, J., Hannan, C. M., Becker, M., Gilbert, S. C., Hill, A. V. S., Smith, G. L. & McMichael, A. ( 1998; ). Enhancement of MHC class I-restricted peptide-specific T cell induction by a DNA prime/MVA boost vaccination regime. Vaccine 16, 439–445.[CrossRef]
    [Google Scholar]
  16. Hanke, T., Samuel, R. V., Blanchard, T. J. & 11 other authors ( 1999; ). Effective induction of simian immunodeficiency virus-specific cytotoxic T lymphocytes in macaques by using a multiepitope gene and DNA prime-modified vaccinia virus Ankara boost vaccination regimen. J Virol 73, 7524–7532.
    [Google Scholar]
  17. Heeney, J. L., Koopman, G., Rosenwirth, B. & 12 other authors ( 2000; ). A vaccine strategy utilizing a combination of three different chimeric vectors which share specific vaccine antigens. J Med Primatol 29, 268–273.
    [Google Scholar]
  18. Jin, X., Bauer, D. E., Tuttleton, S. E. & 11 other authors ( 1999; ). Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 189, 991–998.[CrossRef]
    [Google Scholar]
  19. Kent, S. J., Woodward, A. & Zhao, A. ( 1997; ). Human immunodeficiency virus type 1 (HIV-1)-specific T cell responses correlate with the control of acute HIV-1 infection in macaques. J Infect Dis 176, 1188–1197.[CrossRef]
    [Google Scholar]
  20. Kent, S. J., Zhao, A., Best, S. J., Chandler, J. D., Boyle, D. B. & Ramshaw, I. A. ( 1998; ). Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J Virol 72, 10180–10188.
    [Google Scholar]
  21. Koenig, S., Conley, A. J., Brewah, Y. A. & other authors ( 1995; ). Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nat Med 1, 330–336.[CrossRef]
    [Google Scholar]
  22. Koup, R. A., Safrit, J. T., Cao, Y., Andrews, C. A., McLoed, G., Borkowsky, W., Farthing, C. & Ho, D. D. ( 1994; ). Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 68, 4650–4655.
    [Google Scholar]
  23. Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J. & Hendrickson, W. A. ( 1998; ). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 638–659.[CrossRef]
    [Google Scholar]
  24. Liljeström, P. & Garoff, H. ( 1994; ). Expression of proteins using Semliki Forest virus vectors. In Current Protocols in Molecular Biology, pp. 1092–1098. Edited by A. F. Ausubel. New York: Greene Publishing Associates and Wiley Interscience.
  25. McMichael, A. J. & Hanke, T. ( 2002; ). The quest for an AIDS vaccine: is the CD8+ T-cell approach feasible? Nat Rev Immunol 2, 283–291.[CrossRef]
    [Google Scholar]
  26. Mossman, S. P., Bex, F., Berglund, P. & 11 other authors ( 1996; ). Protection against lethal simian immunodeficiency virus SIVsmmPBj14 disease by a recombinant Semliki Forest virus gp160 vaccine and by a gp120 subunit vaccine. J Virol 70, 1953–1960.
    [Google Scholar]
  27. Neilson, J. R., John, G. C., Carr, J. K. & 13 other authors ( 1999; ). Subtypes of human immunodeficiency virus type 1 and disease stage among women in Nairobi, Kenya. J Virol 73, 4393–4403.
    [Google Scholar]
  28. Nilsson, C., Makitalo, B., Berglund, P. & 8 other authors ( 2001; ). Enhanced simian immunodeficiency virus-specific immune responses in macaques induced by priming with recombinant Semliki Forest virus and boosting with modified vaccinia virus Ankara. Vaccine 19, 3526–3536.[CrossRef]
    [Google Scholar]
  29. Osterhaus, A. D., van Baalen, C. A., Gruters, R. A. & 9 other authors ( 1999; ). Vaccination with Rev and Tat against AIDS. Vaccine 17, 2713–2714.[CrossRef]
    [Google Scholar]
  30. Phillips, R. E., Rowland-Jones, S., Nixon, D. F. & 8 other authors ( 1991; ). Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354, 453–459.[CrossRef]
    [Google Scholar]
  31. Price, D. A., Goulder, P. J., Klenerman, P., Sewell, A. K., Easterbrook, P. J., Troop, M., Bangham, C. R. & Phillips, R. E. ( 1997; ). Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc Natl Acad Sci U S A 94, 1890–1895.[CrossRef]
    [Google Scholar]
  32. Price, D. A., Sewell, A. K., Dong, T., Tan, R., Goulder, P. J., Rowland-Jones, S. L. & Phillips, R. E. ( 1998; ). Antigen-specific release of beta-chemokines by anti-HIV-1 cytotoxic T lymphocytes. Curr Biol 8, 355–358.
    [Google Scholar]
  33. Robinson, H. L., Montefiori, D. C., Johnson, R. P. & 14 other authors ( 1999; ). Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant pox virus booster immunizations. Nat Med 5, 526–534.[CrossRef]
    [Google Scholar]
  34. Rowland-Jones, S. L. & McMichael, A. ( 1995; ). Immune responses in HIV-exposed seronegatives: have they repelled the virus? Curr Opin Immunol 7, 448–455.[CrossRef]
    [Google Scholar]
  35. Schmitz, J. E., Kuroda, M. J., Santra, S. & 13 other authors ( 1999; ). Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860.[CrossRef]
    [Google Scholar]
  36. Schneider, J., Gilbert, S. C., Blanchard, T. J. & 7 other authors ( 1998; ). Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med 4, 397–402.[CrossRef]
    [Google Scholar]
  37. Smerdou, C. & Liljeström, P. ( 1999a; ). Two-helper RNA system for production of recombinant Semliki Forest virus particles. J Virol 73, 1092–1098.
    [Google Scholar]
  38. Smerdou, C. & Liljeström, P. ( 1999b; ). Non-viral amplification systems for gene transfer: vectors based on alphaviruses. Curr Opin Mol Ther 1, 244–251.
    [Google Scholar]
  39. Smerdou, C. & Liljeström, P. ( 2000; ). Alphavirus vectors: from protein production to gene therapy. Gene Ther Reg 1, 33–63.[CrossRef]
    [Google Scholar]
  40. Takahashi, H., Cohen, J., Hosmalin, A. & 7 other authors ( 1988; ). An immunodominant epitope of the human immunodeficiency virus envelope glycoprotein gp160 recognized by class I major histocompatibility molecule-restricted murine cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 85, 3105–3109.[CrossRef]
    [Google Scholar]
  41. Wagner, L., Yang, O. O., Garcia-Zepeda, E. A., Ge, Y., Kalams, S. A., Walker, B. D., Pasternack, M. S. & Luster, A. D. ( 1998; ). Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature 391, 908–911.[CrossRef]
    [Google Scholar]
  42. Wilson, C. C., Brown, R. C., Korber, B. T. & 13 other authors ( 1999; ). Frequent detection of escape from cytotoxic T-lymphocyte recognition in perinatal human immunodeficiency virus (HIV) type 1 transmission: the ariel project for the prevention of transmission of HIV from mother to infant. J Virol 73, 3975–3985.
    [Google Scholar]
  43. Wilson, J. D., Ogg, G. S., Allen, R. L. & 8 other authors ( 2000; ). Direct visualization of HIV-1-specific cytotoxic T lymphocytes during primary infection. AIDS 14, 225–233.[CrossRef]
    [Google Scholar]
  44. Wolinsky, S. M., Korber, B. T., Neumann, A. U. & 7 other authors ( 1996; ). Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection. Science 272, 537–542.[CrossRef]
    [Google Scholar]
  45. Wyatt, R., Kwong, P. D., Desjardins, E., Sweet, R. W., Robinson, J., Hendrickson, W. A. & Sodroski, J. G. ( 1998; ). The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393, 705–711.[CrossRef]
    [Google Scholar]
  46. Yang, O. O., Kalams, S. A., Trocha, A., Cao, H., Luster, A., Johnson, R. P. & Walker, B. D. ( 1997; ). Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J Virol 71, 3120–3128.
    [Google Scholar]
  47. Zhang, C., Cui, Y., Houston, S. & Chang, L. J. ( 1996; ). Protective immunity to HIV-1 in SCID/beige mice reconstituted with peripheral blood lymphocytes of exposed but uninfected individuals. Proc Natl Acad Sci U S A 93, 14720–14725.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18738-0
Loading
/content/journal/jgv/10.1099/vir.0.18738-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error