1887

Abstract

Human cytomegalovirus (HCMV) infection of transplant recipients is frequently associated with allograft vasculopathy and rejection. One potential mechanism is vascular injury from HCMV-triggered, immunologically mediated processes. HCMV infection has been shown to increase the expression of intercellular adhesion molecule-1 (ICAM-1). The objective of this study was to determine the molecular basis of HCMV-enhanced ICAM-1 gene expression. Transient transfection experiments identified the IE2p86 protein as a potent activator of the ICAM-1 promoter. The tegument protein pp71 showed a strong synergistic effect on IE2p86-mediated ICAM-1 promoter activation. Mutagenesis experiments defined a DNA element from −110 to −42 relative to the transcription start site as responsive for IE2p86. Further point mutations within this DNA element identified an Sp1-binding site that was essential for strong synergistic activation by IE2p86 and pp71. To confirm the activation of ICAM-1 gene expression, human fibroblasts (HFF) as well as endothelial cells (HUVEC) were infected with recombinant IE2p86- and pp71-expressing baculoviruses, respectively. In FACS analysis, a synergistic induction of ICAM-1 was detectable when cells were co-infected with the two recombinant baculoviruses. These findings clearly demonstrate that IE2p86 and pp71 are crucial regulatory factors for HCMV-induced ICAM-1 upregulation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18703-0
2003-01-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/1/vir840061.html?itemId=/content/journal/jgv/10.1099/vir.0.18703-0&mimeType=html&fmt=ahah

References

  1. Alford, C. A. & Britt, W. J. ( 1990; ). Cytomegalovirus. In Virology, pp. 1981–2010. Edited by B. N. Fields & D. M. Knipe. New York: Raven Press.
  2. Arlt, H., Lang, D., Gebert, S. & Stamminger, T. ( 1994; ). Identification of binding sites for the 86-kilodalton IE2 protein of human cytomegalovirus within an IE2-responsive viral early promoter. J Virol 68, 4117–4125.
    [Google Scholar]
  3. Baldick, C. J., Jr, Marchini, A., Patterson, C. E. & Shenk, T. ( 1997; ). Human cytomegalovirus tegument protein pp71 (ppUL82) enhances the infectivity of viral DNA and accelerates the infectious cycle. J Virol 71, 4400–4408.
    [Google Scholar]
  4. Biegalke, B. J. & Geballe, A. P. ( 1991; ). Sequence requirements for activation of the HIV-1 LTR by human cytomegalovirus. Virology 183, 381–385.[CrossRef]
    [Google Scholar]
  5. Borchers, A. T., Perez, R., Kaysen, G., Ansari, A. A. & Gershwin, M. E. ( 1999; ). Role of cytomegalovirus infection in allograft rejection: a review of possible mechanisms. Transpl Immunol 7, 75–82.[CrossRef]
    [Google Scholar]
  6. Bresnahan, W. A. & Shenk, T. E. ( 2000; ). UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc Natl Acad Sci U S A 97, 14506–14511.[CrossRef]
    [Google Scholar]
  7. Bresnahan, W. A., Albrecht, T. & Thompson, E. A. ( 1998; ). The cyclin E promoter is activated by human cytomegalovirus 86-kDa immediate early protein. J Biol Chem 273, 22075–22082.[CrossRef]
    [Google Scholar]
  8. Burns, L. J., Pooley, J. C., Walsh, D. J., Vercellotti, G. M., Weber, M. L. & Kovacs, A. ( 1999; ). Intercellular adhesion molecule-1 expression in endothelial cells is activated by cytomegalovirus immediate early proteins. Transplantation 67, 137–144.[CrossRef]
    [Google Scholar]
  9. Caswell, R., Hagemeier, C., Chiou, C. J., Hayward, G., Kouzarides, T. & Sinclair, J. ( 1993; ). The human cytomegalovirus 86K immediate early (IE) 2 protein requires the basic region of the TATA box binding protein (TBP) for binding, and interacts with TBP and transcription factor TFIIB via regions of IE2 required for transcriptional regulation. J Gen Virol 74, 2691–2698.[CrossRef]
    [Google Scholar]
  10. Chau, N. H., Vanson, C. D. & Kerry, J. A. ( 1999; ). Transcriptional regulation of the human cytomegalovirus US11 early gene. J Virol 73, 863–870.
    [Google Scholar]
  11. Cinatl, J. Jr, Kotchetkov, R., Weimer, E., Blaheta, R. A., Scholz, M., Vogel, J. U., Gumbel, H. O. & Doerr, H. W. ( 2000; ). The antisense oligonucleotide ISIS 2922 prevents cytomegalovirus-induced upregulation of IL-8 and ICAM-1 in cultured human fibroblasts. J Med Virol 60, 313–323.[CrossRef]
    [Google Scholar]
  12. DeMarchi, J. M. ( 1981; ). Human cytomegalovirus DNA: restriction enzyme cleavage maps and map locations for immediate-early, early, and late RNAs. Virology 114, 23–38.[CrossRef]
    [Google Scholar]
  13. Dhawan, S., Puri, R. K., Kumar, A., Duplan, H., Masson, J. M. & Aggarwal, B. B. ( 1997; ). Human immunodeficiency virus-1-Tat protein induces the cell surface expression of endothelial leukocyte adhesion molecule-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in human endothelial cells. Blood 90, 1535–1544.
    [Google Scholar]
  14. Dwarakanath, R. S., Clark, C. L., McElroy, A. K. & Spector, D. H. ( 2001; ). The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts. Virology 284, 297–307.[CrossRef]
    [Google Scholar]
  15. Einsele, H., Waller, H. D., Weber, P. & others. ( 1994; ). Cytomegalovirus in liver biopsies of marrow transplant recipients: detection methods, clinical, histological and immunohistological features. Med Microbiol Immunol 183, 205–216.
    [Google Scholar]
  16. Fish, K. N., Stenglein, S. G., Ibanez, C. & Nelson, J. A. ( 1995; ). Cytomegalovirus persistence in macrophages and endothelial cells. Scand J Infect Dis Suppl 99, 34–40.
    [Google Scholar]
  17. Fojas, D. B., Collins, N. K., Du, P., Azizkhan-Clifford, J. & Mudryj, M. ( 2001; ). Cyclin A–CDK phosphorylates Sp1 and enhances Sp1-mediated transcription. EMBO J 20, 5737–5747.[CrossRef]
    [Google Scholar]
  18. Gerna, G., Percivalle, E., Baldanti, F., Sozzani, S., Lanzarini, P., Genini, E., Lilleri, D. & Revello, M. G. ( 2000; ). Human cytomegalovirus replicates abortively in polymorphonuclear leukocytes after transfer from infected endothelial cells via transient microfusion events. J Virol 74, 5629–5638.[CrossRef]
    [Google Scholar]
  19. Gerna, G., Percivalle, E., Baldanti, F. & Revello, M. G. ( 2002; ). Lack of transmission to polymorphonuclear leukocytes and human umbilical vein endothelial cells as a marker of attenuation of human cytomegalovirus. J Med Virol 66, 335–339.[CrossRef]
    [Google Scholar]
  20. Ghazal, P., Young, J., Giulietti, E., DeMattei, C., Garcia, J., Gaynor, R., Stenberg, R. M. & Nelson, J. A. ( 1991; ). A discrete cis element in the human immunodeficiency virus long terminal repeat mediates synergistic trans activation by cytomegalovirus immediate-early proteins. J Virol 65, 6735–6742.
    [Google Scholar]
  21. Grattan, M. T., Moreno-Cabral, C. E., Starnes, V. A., Oyer, P. E., Stinson, E. B. & Shumway, N. E. ( 1989; ). Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA 261, 3561–3566.[CrossRef]
    [Google Scholar]
  22. Grundy, J. E. & Downes, K. L. ( 1993; ). Up-regulation of LFA-3 and ICAM-1 on the surface of fibroblasts infected with cytomegalovirus. Immunology 78, 405–412.
    [Google Scholar]
  23. Grundy, J. E., Lawson, K. M., MacCormac, L. P., Fletcher, J. M. & Yong, K. L. ( 1998; ). Cytomegalovirus-infected endothelial cells recruit neutrophils by the secretion of C-X-C chemokines and transmit virus by direct neutrophil–endothelial cell contact and during neutrophil transendothelial migration. J Infect Dis 177, 1465–1474.[CrossRef]
    [Google Scholar]
  24. Hagemeier, C., Walker, S., Caswell, R., Kouzarides, T. & Sinclair, J. ( 1992a; ). The human cytomegalovirus 80-kilodalton but not the 72-kilodalton immediate-early protein transactivates heterologous promoters in a TATA box-dependent mechanism and interacts directly with TFIID. J Virol 66, 4452–4456.
    [Google Scholar]
  25. Hagemeier, C., Walker, S. M., Sissons, P. J. & Sinclair, J. H. ( 1992b; ). The 72K IE1 and 80K IE2 proteins of human cytomegalovirus independently trans-activate the c-fos, c-myc and hsp70 promoters via basal promoter elements. J Gen Virol 73, 2385–2393.[CrossRef]
    [Google Scholar]
  26. Hendrix, M. G., Salimans, M. M., van Boven, C. P. & Bruggeman, C. A. ( 1990; ). High prevalence of latently present cytomegalovirus in arterial walls of patients suffering from grade III atherosclerosis. Am J Pathol 136, 23–28.
    [Google Scholar]
  27. Hensel, G. M., Meyer, H. H., Buchmann, I., Pommerehne, D., Schmolke, S., Plachter, B., Radsak, K. & Kern, H. F. ( 1996; ). Intracellular localization and expression of the human cytomegalovirus matrix phosphoprotein pp71 (ppUL82): evidence for its translocation into the nucleus. J Gen Virol 77, 3087–3097.[CrossRef]
    [Google Scholar]
  28. Hofmann, H., Floss, S. & Stamminger, T. ( 2000; ). Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J Virol 74, 2510–2524.[CrossRef]
    [Google Scholar]
  29. Horvath, R., Cerny, J., Benedik, J., Jr, Hokl, J., Jelinkova, I. & Benedik, J. ( 2000; ). The possible role of human cytomegalovirus (HCMV) in the origin of atherosclerosis. J Clin Virol 16, 17–24.[CrossRef]
    [Google Scholar]
  30. Hu, K. Q., Yu, C. H. & Vierling, J. M. ( 1992; ). Up-regulation of intercellular adhesion molecule 1 transcription by hepatitis B virus X protein. Proc Natl Acad Sci U S A 89, 11441–11445.[CrossRef]
    [Google Scholar]
  31. Ito, M., Watanabe, M., Ihara, T., Kamiya, H. & Sakurai, M. ( 1995; ). Increased expression of adhesion molecules (CD54, CD29 and CD44) on fibroblasts infected with cytomegalovirus. Microbiol Immunol 39, 129–133.[CrossRef]
    [Google Scholar]
  32. Kloover, J. S., Soots, A. P., Krogerus, L. A., Kauppinen, H. O., Loginov, R. J., Holma, K. L., Bruggeman, C. A., Ahonen, P. J. & Lautenschlager, I. T. ( 2000; ). Rat cytomegalovirus infection in kidney allograft recipients is associated with increased expression of intracellular adhesion molecule-1, vascular adhesion molecule-1, and their ligands leukocyte function antigen-1 and very late antigen-4 in the graft. Transplantation 69, 2641–2647.[CrossRef]
    [Google Scholar]
  33. Knight, D. A., Waldman, W. J. & Sedmak, D. D. ( 1999; ). Cytomegalovirus-mediated modulation of adhesion molecule expression by human arterial and microvascular endothelial cells. Transplantation 68, 1814–1818.[CrossRef]
    [Google Scholar]
  34. Knight, D. A., Briggs, B. R., Bennett, C. F., Harindranath, N., Waldman, W. J. & Sedmak, D. D. ( 2000; ). Attenuation of cytomegalovirus-induced endothelial intercellular adhesion molecule-1 mRNA/protein expression and T lymphocyte adhesion by a 2′-O-methoxyethyl antisense oligonucleotide. Transplantation 69, 417–426.[CrossRef]
    [Google Scholar]
  35. Koskinen, P. K., Nieminen, M. S., Krogerus, L. A., Lemstrom, K. B., Mattila, S. P., Hayry, P. J. & Lautenschlager, I. T. ( 1993; ). Cytomegalovirus infection and accelerated cardiac allograft vasculopathy in human cardiac allografts. J Heart Lung Transplant 12, 724–729.
    [Google Scholar]
  36. Koskinen, P. K., Yilmaz, S., Kallio, E., Bruggeman, C. A., Hayry, P. J. & Lemstrom, K. ( 1996; ). Rat cytomegalovirus infection and chronic kidney allograft rejection. Transpl Int 9 (Suppl. 1), S3–S4.[CrossRef]
    [Google Scholar]
  37. Kowalik, T. F., Wing, B., Haskill, J. S., Azizkhan, J. C., Baldwin, A. S. Jr & Huang, E. S. ( 1993; ). Multiple mechanisms are implicated in the regulation of NF-κB activity during human cytomegalovirus infection. Proc Natl Acad Sci U S A 90, 1107–1111.[CrossRef]
    [Google Scholar]
  38. Kronschnabl, M., Marschall, M. & Stamminger, T. ( 2002; ). Efficient and tightly regulated expression systems for the human cytomegalovirus major transactivator protein IE2p86 in permissive cells. Virus Res 83, 89–102.[CrossRef]
    [Google Scholar]
  39. Lang, D., Gebert, S., Arlt, H. & Stamminger, T. ( 1995; ). Functional interaction between the human cytomegalovirus 86-kilodalton IE2 protein and the cellular transcription factor CREB. J Virol 69, 6030–6037.
    [Google Scholar]
  40. Lautenschlager, I., Hockerstedt, K., Jalanko, H., Loginov, R., Salmela, K., Taskinen, E. & Ahonen, J. ( 1997a; ). Persistent cytomegalovirus in liver allografts with chronic rejection. Hepatology 25, 190–194.[CrossRef]
    [Google Scholar]
  41. Lautenschlager, I., Hockerstedt, K. & Taskinen, E. ( 1997b; ). Expression of adhesion molecules in liver allografts during acute and chronic rejection. Transplant Proc 29, 3114–3115.[CrossRef]
    [Google Scholar]
  42. Lautenschlager, I., Soots, A., Krogerus, L. & 7 other authors ( 1999; ). Time-related effects of cytomegalovirus infection on the development of chronic renal allograft rejection in a rat model. Intervirology 42, 279–284.[CrossRef]
    [Google Scholar]
  43. Lemstrom, K., Koskinen, P., Krogerus, L., Daemen, M., Bruggeman, C. & Hayry, P. ( 1995; ). Cytomegalovirus antigen expression, endothelial cell proliferation, and intimal thickening in rat cardiac allografts after cytomegalovirus infection. Circulation 92, 2594–2604.[CrossRef]
    [Google Scholar]
  44. Levi, M. ( 2001; ). CMV endothelitis as a factor in the pathogenesis of atherosclerosis. Cardiovasc Res 50, 432–433.[CrossRef]
    [Google Scholar]
  45. Liu, B. & Stinski, M. F. ( 1992; ). Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J Virol 66, 4434–4444.
    [Google Scholar]
  46. Lukac, D. M., Manuppello, J. R. & Alwine, J. C. ( 1994; ). Transcriptional activation by the human cytomegalovirus immediate-early proteins: requirements for simple promoter structures and interactions with multiple components of the transcription complex. J Virol 68, 5184–5193.
    [Google Scholar]
  47. Luu, P. & Flores, O. ( 1997; ). Binding of SP1 to the immediate-early protein-responsive element of the human cytomegalovirus DNA polymerase promoter. J Virol 71, 6683–6691.
    [Google Scholar]
  48. McDonough, S. H. & Spector, D. H. ( 1983; ). Transcription in human fibroblasts permissively infected by human cytomegalovirus strain AD169. Virology 125, 31–46.[CrossRef]
    [Google Scholar]
  49. Marchini, A., Liu, H. & Zhu, H. ( 2001; ). Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J Virol 75, 1870–1878.[CrossRef]
    [Google Scholar]
  50. Marshall, K. R., Rowley, K. V., Rinaldi, A., Nicholson, I. P., Ishov, A. M., Maul, G. G. & Preston, C. M. ( 2002; ). Activity and intracellular localization of the human cytomegalovirus protein pp71. J Gen Virol 83, 1601–1612.
    [Google Scholar]
  51. Martelius, T., Krogerus, L., Hockerstedt, K., Bruggeman, C. & Lautenschlager, I. ( 1998; ). Cytomegalovirus infection is associated with increased inflammation and severe bile duct damage in rat liver allografts. Hepatology 27, 996–1002.[CrossRef]
    [Google Scholar]
  52. Mehl, A. M., Floettmann, J. E., Jones, M., Brennan, P. & Rowe, M. ( 2001; ). Characterization of intercellular adhesion molecule-1 regulation by Epstein–Barr virus-encoded latent membrane protein-1 identifies pathways that cooperate with nuclear factor κB to activate transcription. J Biol Chem 276, 984–992.[CrossRef]
    [Google Scholar]
  53. Melnick, J. L., Hu, C., Burek, J., Adam, E. & DeBakey, M. E. ( 1994; ). Cytomegalovirus DNA in arterial walls of patients with atherosclerosis. J Med Virol 42, 170–174.[CrossRef]
    [Google Scholar]
  54. Milanini-Mongiat, J., Pouyssegur, J. & Pages, G. ( 2002; ). Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases. Their implication in vascular endothelial growth factor gene transcription. J Biol Chem 277, 20631–20639.[CrossRef]
    [Google Scholar]
  55. Mocarski, E. S., Kemble, G. W., Lyle, J. M. & Greaves, R. F. ( 1996; ). A deletion mutant in the human cytomegalovirus gene encoding IE1 (491aa) is replication defective due to a failure in autoregulation. Proc Natl Acad Sci U S A 93, 11321–11326.[CrossRef]
    [Google Scholar]
  56. Normann, S. J., Salomon, D. R., Leelachaikul, P. & 7 other authors ( 1991; ). Acute vascular rejection of the coronary arteries in human heart transplantation: pathology and correlations with immunosuppression and cytomegalovirus infection. J Heart Lung Transplant 10, 674–687.
    [Google Scholar]
  57. Papi, A. & Johnston, S. L. ( 1999; ). Rhinovirus infection induces expression of its own receptor intercellular adhesion molecule 1 (ICAM-1) via increased NF-κB-mediated transcription. J Biol Chem 274, 9707–9720.[CrossRef]
    [Google Scholar]
  58. Pizzorno, M. C., Mullen, M. A., Chang, Y. N. & Hayward, G. S. ( 1991; ). The functionally active IE2 immediate-early regulatory protein of human cytomegalovirus is an 80-kilodalton polypeptide that contains two distinct activator domains and a duplicated nuclear localization signal. J Virol 65, 3839–3852.
    [Google Scholar]
  59. Roebuck, K. A. & Finnegan, A. ( 1999; ). Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukocyte Biol 66, 876–888.
    [Google Scholar]
  60. Sambucetti, L. C., Cherrington, J. M., Wilkinson, G. W. & Mocarski, E. S. ( 1989; ). NF-κB activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO J 8, 4251–4258.
    [Google Scholar]
  61. Schnitzler, M. A., Woodward R. S., Brennan, D. C., Spitznagel, E. L., Dunagan, W. C. & Bailey, T. C. ( 1997; ). Impact of cytomegalovirus serology on graft survival in living related kidney transplantation: implications for donor selection. Surgery 121, 563–568.[CrossRef]
    [Google Scholar]
  62. Scully, A. L., Sommer, M. H., Schwartz, R. & Spector, D. H. ( 1995; ). The human cytomegalovirus IE2 86-kilodalton protein interacts with an early gene promoter via site-specific DNA binding and protein–protein associations. J Virol 69, 6533–6540.
    [Google Scholar]
  63. Sedmak, D. D., Knight, D. A., Vook, N. C. & Waldman, J. W. ( 1994; ). Divergent patterns of ELAM-1, ICAM-1, and VCAM-1 expression on cytomegalovirus-infected endothelial cells. Transplantation 58, 1379–1385.
    [Google Scholar]
  64. Shoji, I., Aizaki, H., Tani, H., Ishii, K., Chiba, T., Saito, I., Miyamura, T. & Matsuura, Y. ( 1997; ). Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol 78, 2657–2664.
    [Google Scholar]
  65. Sindre, H., Tjoonnfjord, G. E., Rollag, H., Ranneberg-Nilsen, T., Veiby, O. P., Beck, S., Degre, M. & Hestdal, K. ( 1996; ). Human cytomegalovirus suppression of and latency in early hematopoietic progenitor cells. Blood 88, 4526–4533.
    [Google Scholar]
  66. Skowronski, E. W., Mendoza, A., Smith, S. C. Jr & Jaski, B. E. ( 1993; ). Detection of cytomegalovirus in paraffin-embedded post-mortem coronary artery specimens of heart transplant recipients by the polymerase chain reaction: implications of cytomegalovirus association with graft atherosclerosis. J Heart Lung Transplant 12, 717–723.
    [Google Scholar]
  67. Sommer, M. H., Scully, A. L. & Spector, D. H. ( 1994; ). Transactivation by the human cytomegalovirus IE2 86-kilodalton protein requires a domain that binds to both the TATA box-binding protein and the retinoblastoma protein. J Virol 68, 6223–6231.
    [Google Scholar]
  68. Speir, E., Modali, R., Huang, E. S., Leon, M. B., Shawl, F., Finkel, T. & Epstein, S. E. ( 1994; ). Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 265, 391–394.[CrossRef]
    [Google Scholar]
  69. Stamminger, T., Gstaiger, M., Weinzierl, K., Lorz, K., Winkler, M. & Schaffner, W. ( 2002; ). Open reading frame UL26 of human cytomegalovirus encodes a novel tegument protein that contains a strong transcriptional activation domain. J Virol 76, 4836–4847.[CrossRef]
    [Google Scholar]
  70. Stark, J. M., Godding, V., Sedgwick, J. B. & Busse, W. W. ( 1996; ). Respiratory syncytial virus infection enhances neutrophil and eosinophil adhesion to cultured respiratory epithelial cells. Roles of CD18 and intercellular adhesion molecule-1. J Immunol 156, 4774–4782.
    [Google Scholar]
  71. Steinhoff, G., You, X. M., Steinmuller, C., Boeke, K., Stals, F. S., Bruggeman, C. A. & Haverich, A. ( 1995; ). Induction of endothelial adhesion molecules by rat cytomegalovirus in allogeneic lung transplantation in the rat. Scand J Infect Dis Suppl 99, 58–60.
    [Google Scholar]
  72. Stenberg, R. M., Depto, A. S., Fortney, J. & Nelson, J. A. ( 1989; ). Regulated expression of early and late RNAs and proteins from the human cytomegalovirus immediate-early gene region. J Virol 63, 2699–2708.
    [Google Scholar]
  73. Streblow, D. N., Orloff, S. L. & Nelson, J. A. ( 2001; ). Do pathogens accelerate atherosclerosis? J Nutr 131, 2798S–2804S.
    [Google Scholar]
  74. Sun, B., Harrowe, G., Reinhard, C., Yoshihara, C., Chu, K. & Zhuo, S. ( 2001; ). Modulation of human cytomegalovirus immediate-early gene enhancer by mitogen-activated protein kinase kinase kinase-1. J Cell Biochem 83, 563–573.[CrossRef]
    [Google Scholar]
  75. The, T. H., Kas-Deelen, A. M., de Maar, E. F., Driessen, C., Harmsen, M. C. & van Son, W. J. ( 2001; ). Cellular and humoral parameters for vascular damage in blood during cytomegalovirus infections. Transplant Proc 33, 1813.[CrossRef]
    [Google Scholar]
  76. van de Stolpe, S. A. & van der Saag, P. T. ( 1996; ). Intercellular adhesion molecule-1. J Mol Med 74, 13–33.[CrossRef]
    [Google Scholar]
  77. van de Stolpe, S. A., Caldenhoven, E., Stade, B. G., Koenderman, L., Raaijmakers, J. A., Johnson, J. P. & van der Saag, P. T. ( 1994; ). 12-O-tetradecanoylphorbol-13-acetate- and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter. J Biol Chem 269, 6185–6192.
    [Google Scholar]
  78. Waldman, W. J., Knight, D. A., Huang, E. H. & Sedmak, D. D. ( 1995; ). Bidirectional transmission of infectious cytomegalovirus between monocytes and vascular endothelial cells: an in vitro model. J Infect Dis 171, 263–272.[CrossRef]
    [Google Scholar]
  79. Waldman, W. J., Knight, D. A. & Huang, E. H. ( 1998; ). An in vitro model of T cell activation by autologous cytomegalovirus (CMV)-infected human adult endothelial cells: contribution of CMV- enhanced endothelial ICAM-1. J Immunol 160, 3143–3151.
    [Google Scholar]
  80. Wara-Aswapati, N., Yang, Z., Waterman, W. R., Koyama, Y., Tetradis, S., Choy, B. K., Webb, A. C. & Auron, P. E. ( 1999; ). Cytomegalovirus IE2 protein stimulates interleukin 1β gene transcription via tethering to Spi-1/PU.1. Mol Cell Biol 19, 6803–6814.
    [Google Scholar]
  81. Wathen, M. W., Thomsen, D. R. & Stinski, M. F. ( 1981; ). Temporal regulation of human cytomegalovirus transcription at immediate early and early times after infection. J Virol 38, 446–459.
    [Google Scholar]
  82. Wu, J., O'Neill, J. & Barbosa, M. S. ( 1998; ). Transcription factor Sp1 mediates cell-specific trans-activation of the human cytomegalovirus DNA polymerase gene promoter by immediate-early protein IE86 in glioblastoma U373MG cells. J Virol 72, 236–244.
    [Google Scholar]
  83. Yilmaz, S., Koskinen, P. K., Kallio, E., Bruggeman, C. A., Hayry, P. J. & Lemstrom, K. B. ( 1996; ). Cytomegalovirus infection-enhanced chronic kidney allograft rejection is linked with intercellular adhesion molecule-1 expression. Kidney Int 50, 526–537.[CrossRef]
    [Google Scholar]
  84. Yoo, Y. D., Chiou, C. J., Choi, K. S., Yi, Y., Michelson, S., Kim, S., Hayward, G. S. & Kim, S. J. ( 1996; ). The IE2 regulatory protein of human cytomegalovirus induces expression of the human transforming growth factor β1 gene through an Egr-1 binding site. J Virol 70, 7062–7070.
    [Google Scholar]
  85. Yurochko, A. D., Kowalik, T. F., Huong, S. M. & Huang, E. S. ( 1995; ). Human cytomegalovirus upregulates NF-κB activity by transactivating the NF-κB p105/p50 and p65 promoters. J Virol 69, 5391–5400.
    [Google Scholar]
  86. Yurochko, A. D., Mayo, M. W., Poma, E. E., Baldwin, A. S. Jr & Huang, E. S. ( 1997; ). Induction of the transcription factor Sp1 during human cytomegalovirus infection mediates upregulation of the p65 and p105/p50 NF-κB promoters. J Virol 71, 4638–4648.
    [Google Scholar]
  87. Zhou, Y. F., Leon, M. B., Waclawiw, M. A., Popma, J. J., Yu, Z. X., Finkel, T. & Epstein, S. E. ( 1996; ). Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N Engl J Med 335, 624–630.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18703-0
Loading
/content/journal/jgv/10.1099/vir.0.18703-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error