1887

Abstract

Human cytomegalovirus (HCMV) infection of transplant recipients is frequently associated with allograft vasculopathy and rejection. One potential mechanism is vascular injury from HCMV-triggered, immunologically mediated processes. HCMV infection has been shown to increase the expression of intercellular adhesion molecule-1 (ICAM-1). The objective of this study was to determine the molecular basis of HCMV-enhanced ICAM-1 gene expression. Transient transfection experiments identified the IE2p86 protein as a potent activator of the ICAM-1 promoter. The tegument protein pp71 showed a strong synergistic effect on IE2p86-mediated ICAM-1 promoter activation. Mutagenesis experiments defined a DNA element from −110 to −42 relative to the transcription start site as responsive for IE2p86. Further point mutations within this DNA element identified an Sp1-binding site that was essential for strong synergistic activation by IE2p86 and pp71. To confirm the activation of ICAM-1 gene expression, human fibroblasts (HFF) as well as endothelial cells (HUVEC) were infected with recombinant IE2p86- and pp71-expressing baculoviruses, respectively. In FACS analysis, a synergistic induction of ICAM-1 was detectable when cells were co-infected with the two recombinant baculoviruses. These findings clearly demonstrate that IE2p86 and pp71 are crucial regulatory factors for HCMV-induced ICAM-1 upregulation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18703-0
2003-01-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/1/vir840061.html?itemId=/content/journal/jgv/10.1099/vir.0.18703-0&mimeType=html&fmt=ahah

References

  1. Alford C. A., Britt W. J.. 1990; Cytomegalovirus. In Virology pp 1981–2010 Edited by Fields B. N., Knipe D. M.. New York: Raven Press;
    [Google Scholar]
  2. Arlt H., Lang D., Gebert S., Stamminger T.. 1994; Identification of binding sites for the 86-kilodalton IE2 protein of human cytomegalovirus within an IE2-responsive viral early promoter. J Virol68:4117–4125
    [Google Scholar]
  3. Baldick C. J. Jr, Marchini A., Patterson C. E., Shenk T.. 1997; Human cytomegalovirus tegument protein pp71 (ppUL82) enhances the infectivity of viral DNA and accelerates the infectious cycle. J Virol71:4400–4408
    [Google Scholar]
  4. Biegalke B. J., Geballe A. P.. 1991; Sequence requirements for activation of the HIV-1 LTR by human cytomegalovirus. Virology183:381–385
    [Google Scholar]
  5. Borchers A. T., Perez R., Kaysen G., Ansari A. A., Gershwin M. E.. 1999; Role of cytomegalovirus infection in allograft rejection: a review of possible mechanisms. Transpl Immunol7:75–82
    [Google Scholar]
  6. Bresnahan W. A., Shenk T. E.. 2000; UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc Natl Acad Sci U S A97:14506–14511
    [Google Scholar]
  7. Bresnahan W. A., Albrecht T., Thompson E. A.. 1998; The cyclin E promoter is activated by human cytomegalovirus 86-kDa immediate early protein. J Biol Chem273:22075–22082
    [Google Scholar]
  8. Burns L. J., Pooley J. C., Walsh D. J., Vercellotti G. M., Weber M. L., Kovacs A.. 1999; Intercellular adhesion molecule-1 expression in endothelial cells is activated by cytomegalovirus immediate early proteins. Transplantation67:137–144
    [Google Scholar]
  9. Caswell R., Hagemeier C., Chiou C. J., Hayward G., Kouzarides T., Sinclair J.. 1993; The human cytomegalovirus 86K immediate early (IE) 2 protein requires the basic region of the TATA box binding protein (TBP) for binding, and interacts with TBP and transcription factor TFIIB via regions of IE2 required for transcriptional regulation. J Gen Virol74:2691–2698
    [Google Scholar]
  10. Chau N. H., Vanson C. D., Kerry J. A.. 1999; Transcriptional regulation of the human cytomegalovirus US11 early gene. J Virol73:863–870
    [Google Scholar]
  11. Cinatl J. Jr, Kotchetkov R., Weimer E., Blaheta R. A., Scholz M., Vogel J. U., Gumbel H. O., Doerr H. W.. 2000; The antisense oligonucleotide ISIS 2922 prevents cytomegalovirus-induced upregulation of IL-8 and ICAM-1 in cultured human fibroblasts. J Med Virol60:313–323
    [Google Scholar]
  12. DeMarchi J. M.. 1981; Human cytomegalovirus DNA: restriction enzyme cleavage maps and map locations for immediate-early, early, and late RNAs. Virology114:23–38
    [Google Scholar]
  13. Dhawan S., Puri R. K., Kumar A., Duplan H., Masson J. M., Aggarwal B. B.. 1997; Human immunodeficiency virus-1-Tat protein induces the cell surface expression of endothelial leukocyte adhesion molecule-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in human endothelial cells. Blood90:1535–1544
    [Google Scholar]
  14. Dwarakanath R. S., Clark C. L., McElroy A. K., Spector D. H.. 2001; The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts. Virology284:297–307
    [Google Scholar]
  15. Einsele H., Waller H. D., Weber P.. others 1994; Cytomegalovirus in liver biopsies of marrow transplant recipients: detection methods, clinical, histological and immunohistological features. Med Microbiol Immunol183:205–216
    [Google Scholar]
  16. Fish K. N., Stenglein S. G., Ibanez C., Nelson J. A.. 1995; Cytomegalovirus persistence in macrophages and endothelial cells. Scand J Infect Dis Suppl99:34–40
    [Google Scholar]
  17. Fojas D. B., Collins N. K., Du P., Azizkhan-Clifford J., Mudryj M.. 2001; Cyclin A–CDK phosphorylates Sp1 and enhances Sp1-mediated transcription. EMBO J20:5737–5747
    [Google Scholar]
  18. Gerna G., Percivalle E., Baldanti F., Sozzani S., Lanzarini P., Genini E., Lilleri D., Revello M. G.. 2000; Human cytomegalovirus replicates abortively in polymorphonuclear leukocytes after transfer from infected endothelial cells via transient microfusion events. J Virol74:5629–5638
    [Google Scholar]
  19. Gerna G., Percivalle E., Baldanti F., Revello M. G.. 2002; Lack of transmission to polymorphonuclear leukocytes and human umbilical vein endothelial cells as a marker of attenuation of human cytomegalovirus. J Med Virol66:335–339
    [Google Scholar]
  20. Ghazal P., Young J., Giulietti E., DeMattei C., Garcia J., Gaynor R., Stenberg R. M., Nelson J. A.. 1991; A discrete cis element in the human immunodeficiency virus long terminal repeat mediates synergistic trans activation by cytomegalovirus immediate-early proteins. J Virol65:6735–6742
    [Google Scholar]
  21. Grattan M. T., Moreno-Cabral C. E., Starnes V. A., Oyer P. E., Stinson E. B., Shumway N. E.. 1989; Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA261:3561–3566
    [Google Scholar]
  22. Grundy J. E., Downes K. L.. 1993; Up-regulation of LFA-3 and ICAM-1 on the surface of fibroblasts infected with cytomegalovirus. Immunology78:405–412
    [Google Scholar]
  23. Grundy J. E., Lawson K. M., MacCormac L. P., Fletcher J. M., Yong K. L.. 1998; Cytomegalovirus-infected endothelial cells recruit neutrophils by the secretion of C-X-C chemokines and transmit virus by direct neutrophil–endothelial cell contact and during neutrophil transendothelial migration. J Infect Dis177:1465–1474
    [Google Scholar]
  24. Hagemeier C., Walker S., Caswell R., Kouzarides T., Sinclair J.. 1992a; The human cytomegalovirus 80-kilodalton but not the 72-kilodalton immediate-early protein transactivates heterologous promoters in a TATA box-dependent mechanism and interacts directly with TFIID. J Virol66:4452–4456
    [Google Scholar]
  25. Hagemeier C., Walker S. M., Sissons P. J., Sinclair J. H.. 1992b; The 72K IE1 and 80K IE2 proteins of human cytomegalovirus independently trans-activate the c- fos , c- myc and hsp70 promoters via basal promoter elements. J Gen Virol73:2385–2393
    [Google Scholar]
  26. Hendrix M. G., Salimans M. M., van Boven C. P., Bruggeman C. A.. 1990; High prevalence of latently present cytomegalovirus in arterial walls of patients suffering from grade III atherosclerosis. Am J Pathol136:23–28
    [Google Scholar]
  27. Hensel G. M., Meyer H. H., Buchmann I., Pommerehne D., Schmolke S., Plachter B., Radsak K., Kern H. F.. 1996; Intracellular localization and expression of the human cytomegalovirus matrix phosphoprotein pp71 (ppUL82): evidence for its translocation into the nucleus. J Gen Virol77:3087–3097
    [Google Scholar]
  28. Hofmann H., Floss S., Stamminger T.. 2000; Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J Virol74:2510–2524
    [Google Scholar]
  29. Horvath R., Cerny J., Benedik J. Jr, Hokl J., Jelinkova I., Benedik J.. 2000; The possible role of human cytomegalovirus (HCMV) in the origin of atherosclerosis. J Clin Virol16:17–24
    [Google Scholar]
  30. Hu K. Q., Yu C. H., Vierling J. M.. 1992; Up-regulation of intercellular adhesion molecule 1 transcription by hepatitis B virus X protein. Proc Natl Acad Sci U S A89:11441–11445
    [Google Scholar]
  31. Ito M., Watanabe M., Ihara T., Kamiya H., Sakurai M.. 1995; Increased expression of adhesion molecules (CD54, CD29 and CD44) on fibroblasts infected with cytomegalovirus. Microbiol Immunol39:129–133
    [Google Scholar]
  32. Kloover J. S., Soots A. P., Krogerus L. A., Kauppinen H. O., Loginov R. J., Holma K. L., Bruggeman C. A., Ahonen P. J., Lautenschlager I. T.. 2000; Rat cytomegalovirus infection in kidney allograft recipients is associated with increased expression of intracellular adhesion molecule-1, vascular adhesion molecule-1, and their ligands leukocyte function antigen-1 and very late antigen-4 in the graft. Transplantation69:2641–2647
    [Google Scholar]
  33. Knight D. A., Waldman W. J., Sedmak D. D.. 1999; Cytomegalovirus-mediated modulation of adhesion molecule expression by human arterial and microvascular endothelial cells. Transplantation68:1814–1818
    [Google Scholar]
  34. Knight D. A., Briggs B. R., Bennett C. F., Harindranath N., Waldman W. J., Sedmak D. D.. 2000; Attenuation of cytomegalovirus-induced endothelial intercellular adhesion molecule-1 mRNA/protein expression and T lymphocyte adhesion by a 2′- O -methoxyethyl antisense oligonucleotide. Transplantation69:417–426
    [Google Scholar]
  35. Koskinen P. K., Nieminen M. S., Krogerus L. A., Lemstrom K. B., Mattila S. P., Hayry P. J., Lautenschlager I. T.. 1993; Cytomegalovirus infection and accelerated cardiac allograft vasculopathy in human cardiac allografts. J Heart Lung Transplant12:724–729
    [Google Scholar]
  36. Koskinen P. K., Yilmaz S., Kallio E., Bruggeman C. A., Hayry P. J., Lemstrom K.. 1996; Rat cytomegalovirus infection and chronic kidney allograft rejection. Transpl Int9 (Suppl. 1):S3–S4
    [Google Scholar]
  37. Kowalik T. F., Wing B., Haskill J. S., Azizkhan J. C., Baldwin A. S. Jr, Huang E. S.. 1993; Multiple mechanisms are implicated in the regulation of NF-κB activity during human cytomegalovirus infection. Proc Natl Acad Sci U S A90:1107–1111
    [Google Scholar]
  38. Kronschnabl M., Marschall M., Stamminger T.. 2002; Efficient and tightly regulated expression systems for the human cytomegalovirus major transactivator protein IE2p86 in permissive cells. Virus Res83:89–102
    [Google Scholar]
  39. Lang D., Gebert S., Arlt H., Stamminger T.. 1995; Functional interaction between the human cytomegalovirus 86-kilodalton IE2 protein and the cellular transcription factor CREB. J Virol69:6030–6037
    [Google Scholar]
  40. Lautenschlager I., Hockerstedt K., Jalanko H., Loginov R., Salmela K., Taskinen E., Ahonen J.. 1997a; Persistent cytomegalovirus in liver allografts with chronic rejection. Hepatology25:190–194
    [Google Scholar]
  41. Lautenschlager I., Hockerstedt K., Taskinen E.. 1997b; Expression of adhesion molecules in liver allografts during acute and chronic rejection. Transplant Proc29:3114–3115
    [Google Scholar]
  42. Lautenschlager I., Soots A., Krogerus L.. 7 other authors 1999; Time-related effects of cytomegalovirus infection on the development of chronic renal allograft rejection in a rat model. Intervirology42:279–284
    [Google Scholar]
  43. Lemstrom K., Koskinen P., Krogerus L., Daemen M., Bruggeman C., Hayry P.. 1995; Cytomegalovirus antigen expression, endothelial cell proliferation, and intimal thickening in rat cardiac allografts after cytomegalovirus infection. Circulation92:2594–2604
    [Google Scholar]
  44. Levi M.. 2001; CMV endothelitis as a factor in the pathogenesis of atherosclerosis. Cardiovasc Res50:432–433
    [Google Scholar]
  45. Liu B., Stinski M. F.. 1992; Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J Virol66:4434–4444
    [Google Scholar]
  46. Lukac D. M., Manuppello J. R., Alwine J. C.. 1994; Transcriptional activation by the human cytomegalovirus immediate-early proteins: requirements for simple promoter structures and interactions with multiple components of the transcription complex. J Virol68:5184–5193
    [Google Scholar]
  47. Luu P., Flores O.. 1997; Binding of SP1 to the immediate-early protein-responsive element of the human cytomegalovirus DNA polymerase promoter. J Virol71:6683–6691
    [Google Scholar]
  48. McDonough S. H., Spector D. H.. 1983; Transcription in human fibroblasts permissively infected by human cytomegalovirus strain AD169. Virology125:31–46
    [Google Scholar]
  49. Marchini A., Liu H., Zhu H.. 2001; Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J Virol75:1870–1878
    [Google Scholar]
  50. Marshall K. R., Rowley K. V., Rinaldi A., Nicholson I. P., Ishov A. M., Maul G. G., Preston C. M.. 2002; Activity and intracellular localization of the human cytomegalovirus protein pp71. J Gen Virol83:1601–1612
    [Google Scholar]
  51. Martelius T., Krogerus L., Hockerstedt K., Bruggeman C., Lautenschlager I.. 1998; Cytomegalovirus infection is associated with increased inflammation and severe bile duct damage in rat liver allografts. Hepatology27:996–1002
    [Google Scholar]
  52. Mehl A. M., Floettmann J. E., Jones M., Brennan P., Rowe M.. 2001; Characterization of intercellular adhesion molecule-1 regulation by Epstein–Barr virus-encoded latent membrane protein-1 identifies pathways that cooperate with nuclear factor κB to activate transcription. J Biol Chem276:984–992
    [Google Scholar]
  53. Melnick J. L., Hu C., Burek J., Adam E., DeBakey M. E.. 1994; Cytomegalovirus DNA in arterial walls of patients with atherosclerosis. J Med Virol42:170–174
    [Google Scholar]
  54. Milanini-Mongiat J., Pouyssegur J., Pages G.. 2002; Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases. Their implication in vascular endothelial growth factor gene transcription. J Biol Chem277:20631–20639
    [Google Scholar]
  55. Mocarski E. S., Kemble G. W., Lyle J. M., Greaves R. F.. 1996; A deletion mutant in the human cytomegalovirus gene encoding IE1 (491aa) is replication defective due to a failure in autoregulation. Proc Natl Acad Sci U S A93:11321–11326
    [Google Scholar]
  56. Normann S. J., Salomon D. R., Leelachaikul P.. 7 other authors 1991; Acute vascular rejection of the coronary arteries in human heart transplantation: pathology and correlations with immunosuppression and cytomegalovirus infection. J Heart Lung Transplant10:674–687
    [Google Scholar]
  57. Papi A., Johnston S. L.. 1999; Rhinovirus infection induces expression of its own receptor intercellular adhesion molecule 1 (ICAM-1) via increased NF-κB-mediated transcription. J Biol Chem274:9707–9720
    [Google Scholar]
  58. Pizzorno M. C., Mullen M. A., Chang Y. N., Hayward G. S.. 1991; The functionally active IE2 immediate-early regulatory protein of human cytomegalovirus is an 80-kilodalton polypeptide that contains two distinct activator domains and a duplicated nuclear localization signal. J Virol65:3839–3852
    [Google Scholar]
  59. Roebuck K. A., Finnegan A.. 1999; Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukocyte Biol66:876–888
    [Google Scholar]
  60. Sambucetti L. C., Cherrington J. M., Wilkinson G. W., Mocarski E. S.. 1989; NF-κB activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO J8:4251–4258
    [Google Scholar]
  61. Schnitzler M. A., Woodward R. S., Brennan D. C., Spitznagel E. L., Dunagan W. C., Bailey T. C.. 1997; Impact of cytomegalovirus serology on graft survival in living related kidney transplantation: implications for donor selection. Surgery121:563–568
    [Google Scholar]
  62. Scully A. L., Sommer M. H., Schwartz R., Spector D. H.. 1995; The human cytomegalovirus IE2 86-kilodalton protein interacts with an early gene promoter via site-specific DNA binding and protein–protein associations. J Virol69:6533–6540
    [Google Scholar]
  63. Sedmak D. D., Knight D. A., Vook N. C., Waldman J. W.. 1994; Divergent patterns of ELAM-1, ICAM-1, and VCAM-1 expression on cytomegalovirus-infected endothelial cells. Transplantation58:1379–1385
    [Google Scholar]
  64. Shoji I., Aizaki H., Tani H., Ishii K., Chiba T., Saito I., Miyamura T., Matsuura Y.. 1997; Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol78:2657–2664
    [Google Scholar]
  65. Sindre H., Tjoonnfjord G. E., Rollag H., Ranneberg-Nilsen T., Veiby O. P., Beck S., Degre M., Hestdal K.. 1996; Human cytomegalovirus suppression of and latency in early hematopoietic progenitor cells. Blood88:4526–4533
    [Google Scholar]
  66. Skowronski E. W., Mendoza A., Smith S. C. Jr, Jaski B. E.. 1993; Detection of cytomegalovirus in paraffin-embedded post-mortem coronary artery specimens of heart transplant recipients by the polymerase chain reaction: implications of cytomegalovirus association with graft atherosclerosis. J Heart Lung Transplant12:717–723
    [Google Scholar]
  67. Sommer M. H., Scully A. L., Spector D. H.. 1994; Transactivation by the human cytomegalovirus IE2 86-kilodalton protein requires a domain that binds to both the TATA box-binding protein and the retinoblastoma protein. J Virol68:6223–6231
    [Google Scholar]
  68. Speir E., Modali R., Huang E. S., Leon M. B., Shawl F., Finkel T., Epstein S. E.. 1994; Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science265:391–394
    [Google Scholar]
  69. Stamminger T., Gstaiger M., Weinzierl K., Lorz K., Winkler M., Schaffner W.. 2002; Open reading frame UL26 of human cytomegalovirus encodes a novel tegument protein that contains a strong transcriptional activation domain. J Virol76:4836–4847
    [Google Scholar]
  70. Stark J. M., Godding V., Sedgwick J. B., Busse W. W.. 1996; Respiratory syncytial virus infection enhances neutrophil and eosinophil adhesion to cultured respiratory epithelial cells. Roles of CD18 and intercellular adhesion molecule-1. J Immunol156:4774–4782
    [Google Scholar]
  71. Steinhoff G., You X. M., Steinmuller C., Boeke K., Stals F. S., Bruggeman C. A., Haverich A.. 1995; Induction of endothelial adhesion molecules by rat cytomegalovirus in allogeneic lung transplantation in the rat. Scand J Infect Dis Suppl99:58–60
    [Google Scholar]
  72. Stenberg R. M., Depto A. S., Fortney J., Nelson J. A.. 1989; Regulated expression of early and late RNAs and proteins from the human cytomegalovirus immediate-early gene region. J Virol63:2699–2708
    [Google Scholar]
  73. Streblow D. N., Orloff S. L., Nelson J. A.. 2001; Do pathogens accelerate atherosclerosis?. J Nutr131:2798S–2804S
    [Google Scholar]
  74. Sun B., Harrowe G., Reinhard C., Yoshihara C., Chu K., Zhuo S.. 2001; Modulation of human cytomegalovirus immediate-early gene enhancer by mitogen-activated protein kinase kinase kinase-1. J Cell Biochem83:563–573
    [Google Scholar]
  75. The T. H., Kas-Deelen A. M., de Maar E. F., Driessen C., Harmsen M. C., van Son W. J.. 2001; Cellular and humoral parameters for vascular damage in blood during cytomegalovirus infections. Transplant Proc33:1813
    [Google Scholar]
  76. van de Stolpe S. A., van der Saag P. T.. 1996; Intercellular adhesion molecule-1. J Mol Med74:13–33
    [Google Scholar]
  77. van de Stolpe S. A., Caldenhoven E., Stade B. G., Koenderman L., Raaijmakers J. A., Johnson J. P., van der Saag P. T.. 1994; 12- O -tetradecanoylphorbol-13-acetate- and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter. J Biol Chem269:6185–6192
    [Google Scholar]
  78. Waldman W. J., Knight D. A., Huang E. H., Sedmak D. D.. 1995; Bidirectional transmission of infectious cytomegalovirus between monocytes and vascular endothelial cells: an in vitro model. J Infect Dis171:263–272
    [Google Scholar]
  79. Waldman W. J., Knight D. A., Huang E. H.. 1998; An in vitro model of T cell activation by autologous cytomegalovirus (CMV)-infected human adult endothelial cells: contribution of CMV- enhanced endothelial ICAM-1. J Immunol160:3143–3151
    [Google Scholar]
  80. Wara-Aswapati N., Yang Z., Waterman W. R., Koyama Y., Tetradis S., Choy B. K., Webb A. C., Auron P. E.. 1999; Cytomegalovirus IE2 protein stimulates interleukin 1β gene transcription via tethering to Spi-1/PU.1. Mol Cell Biol19:6803–6814
    [Google Scholar]
  81. Wathen M. W., Thomsen D. R., Stinski M. F.. 1981; Temporal regulation of human cytomegalovirus transcription at immediate early and early times after infection. J Virol38:446–459
    [Google Scholar]
  82. Wu J., O'Neill J., Barbosa M. S.. 1998; Transcription factor Sp1 mediates cell-specific trans-activation of the human cytomegalovirus DNA polymerase gene promoter by immediate-early protein IE86 in glioblastoma U373MG cells. J Virol72:236–244
    [Google Scholar]
  83. Yilmaz S., Koskinen P. K., Kallio E., Bruggeman C. A., Hayry P. J., Lemstrom K. B.. 1996; Cytomegalovirus infection-enhanced chronic kidney allograft rejection is linked with intercellular adhesion molecule-1 expression. Kidney Int50:526–537
    [Google Scholar]
  84. Yoo Y. D., Chiou C. J., Choi K. S., Yi Y., Michelson S., Kim S., Hayward G. S., Kim S. J.. 1996; The IE2 regulatory protein of human cytomegalovirus induces expression of the human transforming growth factor β1 gene through an Egr-1 binding site. J Virol70:7062–7070
    [Google Scholar]
  85. Yurochko A. D., Kowalik T. F., Huong S. M., Huang E. S.. 1995; Human cytomegalovirus upregulates NF-κB activity by transactivating the NF-κB p105/p50 and p65 promoters. J Virol69:5391–5400
    [Google Scholar]
  86. Yurochko A. D., Mayo M. W., Poma E. E., Baldwin A. S. Jr, Huang E. S.. 1997; Induction of the transcription factor Sp1 during human cytomegalovirus infection mediates upregulation of the p65 and p105/p50 NF-κB promoters. J Virol71:4638–4648
    [Google Scholar]
  87. Zhou Y. F., Leon M. B., Waclawiw M. A., Popma J. J., Yu Z. X., Finkel T., Epstein S. E.. 1996; Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N Engl J Med335:624–630
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18703-0
Loading
/content/journal/jgv/10.1099/vir.0.18703-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error