1887

Abstract

In early herpes simplex virus (HSV) infection, the virion host shutoff (vhs) protein mediates the degradation of mRNA and subsequent shutoff of host protein synthesis. It is unclear whether vhs acts alone or in concert with virus-induced cellular factors for this activity. This paper examines whether RNase L, a virally induced endoribonuclease, contributes to HSV-induced mRNA decay. Results showed that RNA degradation was comparable in wild-type and RNase L cells, demonstrating that HSV-mediated RNA degradation is independent of RNase L activity. Furthermore, the data show that HSV-1 does not significantly induce RNase L activity in murine embryo fibroblasts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18695-0
2003-04-01
2020-11-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/4/vir840925.html?itemId=/content/journal/jgv/10.1099/vir.0.18695-0&mimeType=html&fmt=ahah

References

  1. Becker Y., Tavor E., Asher Y., Berkowitz C., Moyal M.. 1993; Effect of herpes simplex virus type-1 UL41 gene on the stability of mRNA from the cellular genes: β -actin, fibronectin, glucose transporter-1, and docking protein, and on virus intraperitoneal pathogenicity to newborn mice. Virus Genes7:133–143
    [Google Scholar]
  2. Cayley P. J., Knight M., Kerr I. M.. 1982; Virus-mediated inhibition of the ppp(A2′p)nA system and its prevention by interferon. Biochem Biophys Res Commun104:376–382
    [Google Scholar]
  3. Cayley P. J., Davies J. A., McCullagh K. G., Kerr I. M.. 1984; Activation of the ppp(A2′p)nA system in interferon-treated, herpes simplex virus-infected cells and evidence for novel inhibitors of the ppp(A2′p)nA-dependent RNase. Eur J Biochem143:165–174
    [Google Scholar]
  4. Doherty A. J., Serpell L. C., Ponting C. P.. 1996; The helix–hairpin–helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res24:2488–2497
    [Google Scholar]
  5. Elgadi M. M., Smiley J. R.. 1999; Picornavirus internal ribosome entry site elements target RNA cleavage events induced by the herpes simplex virus virion host shutoff protein. J Virol73:9222–9231
    [Google Scholar]
  6. Feng P., Everly D. N. Jr, Read G. S.. 2001; mRNA decay during herpesvirus infections: interaction between a putative viral nuclease and a cellular translation factor. J Virol75:10272–10280
    [Google Scholar]
  7. Fenwick M. L., Clark J.. 1982; Early and delayed shut-off of host protein synthesis in cells infected with herpes simplex virus. J Gen Virol61:121–125
    [Google Scholar]
  8. Fenwick M. L., Everett R. D.. 1990; Inactivation of the shutoff gene (UL41) of herpes simplex virus types 1 and 2. J Gen Virol71:2961–2967
    [Google Scholar]
  9. Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M.. 1985; Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res13:1431–1442
    [Google Scholar]
  10. Fujihara M., Milligan J. R., Kaji A.. 1989; Effect of 2′,5′-oligoadenylate on herpes simplex virus-infected cells and preventive action of 2′,5′-oligoadenylate on the lethal effect of HSV-2. J Interferon Res9:691–707
    [Google Scholar]
  11. Jones F. E., Smibert C. A., Smiley J. R.. 1995; Mutational analysis of the herpes simplex virus virion host shutoff protein: evidence that vhs functions in the absence of other viral proteins. J Virol69:4863–4871
    [Google Scholar]
  12. Khabar K. S., Dhalla M., Siddiqui Y., Zhou A., Al-Ahdal M. N., Der S. D., Silverman R. H., Williams B. R.. 2000; Effect of deficiency of the double-stranded RNA-dependent protein kinase, PKR, on antiviral resistance in the presence or absence of ribonuclease L: HSV-1 replication is particularly sensitive to deficiency of the major IFN-mediated enzymes. J Interferon Cytokine Res20:653–659
    [Google Scholar]
  13. Kwong A. D., Frenkel N.. 1987; Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. Proc Natl Acad Sci U S A84:1926–1930
    [Google Scholar]
  14. Kwong A. D., Frenkel N.. 1989; The herpes simplex virus virion host shutoff function. J Virol63:4834–4839
    [Google Scholar]
  15. Kwong A. D., Kruper J. A., Frenkel N.. 1988; Herpes simplex virus virion host shutoff function. J Virol62:912–921
    [Google Scholar]
  16. Leib D. A., Machalek M. A., Williams B. R., Silverman R. H., Virgin H. W.. 2000; Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci U S A97:6097–6101
    [Google Scholar]
  17. Lu P., Jones F. E., Saffran H. A., Smiley J. R.. 2001; Herpes simplex virus virion host shutoff protein requires a mammalian factor for efficient in vitro endoribonuclease activity. J Virol75:1172–1185
    [Google Scholar]
  18. Martinand C., Montavon C., Salehzada T., Silhol M., Lebleu B., Bisbal C.. 1999; RNase L inhibitor is induced during human immunodeficiency virus type 1 infection and down regulates the 2-5A/RNase L pathway in human T cells. J Virol73:290–296
    [Google Scholar]
  19. Mossman K. L., Macgregor P. F., Rozmus J. J., Goryachev A. B., Edwards A. M., Smiley J. R.. 2001; Herpes simplex virus triggers and then disarms a host antiviral response. J Virol75:750–758
    [Google Scholar]
  20. Oroskar A. A., Read G. S.. 1989; Control of mRNA stability by the virion host shutoff function of herpes simplex virus. J Virol63:1897–1906
    [Google Scholar]
  21. Read G. S., Frenkel N.. 1983; Herpes simplex virus mutants defective in the virion associated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of alpha (immediate early) viral polypeptides. J Virol46:498–512
    [Google Scholar]
  22. Read G. S., Karr B. M., Knight K.. 1993; Isolation of a herpes simplex virus type 1 mutant with a deletion in the virion host shutoff gene and identification of multiple forms of the vhs (UL41) polypeptide. J Virol67:7149–7160
    [Google Scholar]
  23. Silverman R. H.. 1997; 2-5A-dependent RNase L: a regulated endoribonuclease in the interferon system. In Ribonucleases: Structures and Functions pp 515–551 Edited D'Alessio G., Riordan J. F.. New York: Academic Press;
    [Google Scholar]
  24. Smibert C. A., Johnson D. C., Smiley J. R.. 1992; Identification and characterization of the virion-induced host shutoff product of herpes simplex virus gene UL41. J Gen Virol73:467–470
    [Google Scholar]
  25. Smith T. J., Ackland-Berglund C. E., Leib D. A.. 2000; Herpes simplex virus virion host shutoff ( vhs ) activity alters periocular disease in mice. J Virol74:3598–3604
    [Google Scholar]
  26. Strelow L. I., Leib D. A.. 1995; Role of the virion host shutoff ( vhs ) of herpes simplex virus type 1 in latency and pathogenesis. J Virol69:6779–6786
    [Google Scholar]
  27. Strelow L. I., Leib D. A.. 1996; Analysis of conserved domains of UL41 of herpes simplex virus type 1 in virion host shutoff and pathogenesis. J Virol70:5665–5667
    [Google Scholar]
  28. Yokota S., Yokosawa N., Kubota T., Suzutani T., Yoshida I., Miura S., Jimbow K., Fujii N.. 2001; Herpes simplex virus type 1 suppresses the interferon signaling pathway by inhibiting phosphorylation of STATs and janus kinases during an early infection stage. Virology286:119–124
    [Google Scholar]
  29. Zelus B. D., Stewart R. S., Ross J.. 1996; The virion host shutoff protein of herpes simplex virus type 1: messenger ribonucleolytic activity in vitro . J Virol70:2411–2419
    [Google Scholar]
  30. Zheng X., Silverman R. H., Zhou A., Goto T., Kwon B. S., Kaufman H. E., Hill J. M.. 2001; Increased severity of HSV-1 keratitis and mortality in mice lacking the 2-5A-dependent RNase L gene. Investig Ophthalmol Vis Sci42:120–126
    [Google Scholar]
  31. Zhou A., Paranjape J., Brown T. L.. 8 other authors 1997; Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J16:6355–6363
    [Google Scholar]
  32. Zhou A., Paranjape J. M., Der S. D., Williams B. R., Silverman R. H.. 1999; Interferon action in triply deficient mice reveals the existence of alternative antiviral pathways. Virology258:435–440
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18695-0
Loading
/content/journal/jgv/10.1099/vir.0.18695-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error