1887

Abstract

Recent studies have revealed that ‘human retrovirus-5’ sequences found in human samples belong to a rabbit endogenous retrovirus family named RERV-H. A part of the region of the RERV-H genome was amplified by PCR from DNA in human samples and several forms of RERV-H protease were expressed in bacteria. The RERV-H protease was able to cleave itself from a precursor protein and was also able to cleave the RERV-H Gag polyprotein precursor whereas a form of the protease with a mutation engineered into the active site was inactive. Potential N- and C-terminal autocleavage sites were characterized. The RERV-H protease was sensitive to pepstatin A, showing it to be an aspartic protease. Moreover, it was strongly inhibited by PYVPheStaAMT, a pseudopeptide inhibitor specific for Mason–Pfizer monkey virus and avian myeloblastosis-associated virus. A structural model of the RERV-H protease was constructed that, together with the activity data, confirms that this is a retroviral aspartic protease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18670-0
2003-01-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/1/vir840215.html?itemId=/content/journal/jgv/10.1099/vir.0.18670-0&mimeType=html&fmt=ahah

References

  1. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. ( 2000; ). The Protein Data Bank. Nucleic Acids Res 28, 235–242.[CrossRef]
    [Google Scholar]
  2. Bianchi, M., Boigegrain, R. A., Castro, B. & Coletti-Previero, M. A. ( 1990; ). N-terminal domain of pepsin as a model for retroviral dimeric aspartyl protease. Biochem Biophys Res Commun 167, 339–344.[CrossRef]
    [Google Scholar]
  3. Brand, A., Griffiths, D. J., Herve, C., Mallon, E. & Venables, P. J. ( 1999; ). Human retrovirus-5 in rheumatic disease. J Autoimmun 13, 149–154.[CrossRef]
    [Google Scholar]
  4. Darke, P. L., Leu, C. T., Davis, L. J., Heimbach, J. C., Diehl, R. E., Hill, W. S., Dixon, R. A. & Sigal, I. S. ( 1989; ). Human immunodeficiency virus protease. Bacterial expression and characterization of the purified aspartic protease. J Biol Chem 264, 2307–2312.
    [Google Scholar]
  5. Davies, D. R. ( 1990; ). The structure and function of the aspartic proteinases. Annu Rev Biophys Biomol Struct 19, 189–215.[CrossRef]
    [Google Scholar]
  6. Dean, C. J., Gyure, L. A., Hall, J. G. & Styles, J. M. ( 1986; ). Production of IgA-secreting rat X rat hybridomas. Methods Enzymol 121, 52–59.
    [Google Scholar]
  7. Debouck, C., Gorniak, J. G., Strickler, J. E., Meek, T. D., Metcalf, B. W. & Rosenberg, M. ( 1987; ). Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the Gag precursor. Proc Natl Acad Sci U S A 84, 8903–8906.[CrossRef]
    [Google Scholar]
  8. Dreyer, G. B., Metcalf, B. W., Tomaszek, T. A., Jr & 9 other authors ( 1989; ). Inhibition of human immunodeficiency virus 1 protease in vitro: rational design of substrate analogue inhibitors. Proc Natl Acad Sci U S A 86, 9752–9756.[CrossRef]
    [Google Scholar]
  9. Elder, J. H., Lerner, D. L., Hasselkus-Light, C. S., Fontenot, D. J., Hunter, E., Luciw, P. A., Montelaro, R. C. & Phillips, T. R. ( 1992; ). Distinct subsets of retroviruses encode dUTPase. J Virol 66, 1791–1794.
    [Google Scholar]
  10. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. ( 1985; ). Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5, 3610–3616.
    [Google Scholar]
  11. Graves, M. C., Lim, J. J., Heimer, E. P. & Kramer, R. A. ( 1988; ). An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity. Proc Natl Acad Sci U S A 85, 2449–2453.[CrossRef]
    [Google Scholar]
  12. Griffiths, D. J. ( 1996; ). Investigation of a novel retroviral element isolated from human salivary gland. PhD thesis. University of London, London, UK.
  13. Griffiths, D. J., Venables, P. J., Weiss, R. A. & Boyd, M. T. ( 1997; ). A novel exogenous retrovirus sequence identified in humans. J Virol 71, 2866–2872.
    [Google Scholar]
  14. Griffiths, D. J., Cooke, S. P., Herve, C. & 11 other authors ( 1999; ). Detection of human retrovirus 5 in patients with arthritis and systemic lupus erythematosus. Arthritis Rheum 42, 448–454.[CrossRef]
    [Google Scholar]
  15. Griffiths, D. J., Voisset, C., Venables, P. J. W. & Weiss, R. A. ( 2002; ). Novel endogenous retrovirus of rabbits previously identified as human retrovirus 5. J Virol 76, 7094–7102.[CrossRef]
    [Google Scholar]
  16. Grinde, B., Cameron, C. E., Leis, J., Weber, I. T., Wlodawer, A., Burstein, H. & Skalka, A. M. ( 1992; ). Analysis of substrate interactions of the Rous sarcoma virus wild type and mutant proteases and human immunodeficiency virus-1 protease using a set of systematically altered peptide substrates. J Biol Chem 267, 9491–9498.
    [Google Scholar]
  17. Gustchina, A., Kervinen, J., Powell, D. J., Zdanov, A., Kay, J. & Wlodawer, A. ( 1996; ). Structure of equine infectious anemia virus proteinase complexed with an inhibitor. Protein Sci 5, 1453–1465.[CrossRef]
    [Google Scholar]
  18. Hansen, J., Billich, S., Schulze, T., Sukrow, S. & Moelling, K. ( 1988; ). Partial purification and substrate analysis of bacterially expressed HIV protease by means of monoclonal antibody. EMBO J 7, 1785–1791.
    [Google Scholar]
  19. Hatfield, D. L., Levin, J. G., Rein, A. & Oroszlan, S. ( 1992; ). Translational suppression in retroviral gene expression. Adv Virus Res 41, 193–239.
    [Google Scholar]
  20. Hayakawa, T., Misumi, Y., Kobayashi, M., Yamamoto, Y. & Fujisawa, Y. ( 1992; ). Requirement of N- and C-terminal regions for enzymatic activity of human T-cell leukemia virus type I protease. Eur J Biochem 206, 919–925.[CrossRef]
    [Google Scholar]
  21. Hill, J. & Phylip, L. H. ( 1997; ). Bacterial aspartic proteinases. FEBS Lett 409, 357–360.[CrossRef]
    [Google Scholar]
  22. Hoog, S. S., Towler, E. M., Zhao, B., Doyle, M. L., Debouck, C. & Abdel-Meguid, S. S. ( 1996; ). Human immunodeficiency virus protease ligand specificity conferred by residues outside of the active site cavity. Biochemistry 35, 10279–10286.[CrossRef]
    [Google Scholar]
  23. Hruskova-Heidingsfeldova, O., Andreansky, M., Fabry, M., Blaha, I., Strop, P. & Hunter, E. ( 1995; ). Cloning, bacterial expression, and characterization of the Mason–Pfizer monkey virus proteinase. J Biol Chem 270, 15053–15058.[CrossRef]
    [Google Scholar]
  24. Katoh, I., Yoshinaka, Y., Rein, A., Shibuya, M., Odaka, T. & Oroszlan, S. ( 1985; ). Murine leukemia virus maturation: protease region required for conversion from ‘immature’ to ‘mature’ core form and for virus infectivity. Virology 145, 280–292.[CrossRef]
    [Google Scholar]
  25. Katoh, I., Yasunaga, T., Ikawa, Y. & Yoshinaka, Y. ( 1987; ). Inhibition of retroviral protease activity by an aspartyl proteinase inhibitor. Nature 329, 654–656.[CrossRef]
    [Google Scholar]
  26. Kervinen, J., Lubkowski, J., Zdanov, A. & 7 other authors ( 1998; ). Toward a universal inhibitor of retroviral proteases: comparative analysis of the interactions of LP-130 complexed with proteases from HIV-1, FIV, and EIAV. Protein Sci 7, 2314–2323.[CrossRef]
    [Google Scholar]
  27. Kohl, N. E., Emini, E. A., Schleif, W. A., Davis, L. J., Heimbach, J. C., Dixon, R. A., Scolnick, E. M. & Sigal, I. S. ( 1988; ). Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A 85, 4686–4690.[CrossRef]
    [Google Scholar]
  28. Kozireva, S., Lejniece, S., Blomberg, J. & Murovska, M. ( 2001; ). Human retrovirus type 5 sequences in non-Hodgkin's lymphoma of T cell origin. AIDS Res Hum Retroviruses 17, 953–956.[CrossRef]
    [Google Scholar]
  29. Krohn, A., Redshaw, S., Ritchie, J. C., Graves, B. J. & Hatada, M. H. ( 1991; ). Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere. J Med Chem 34, 3340–3342.[CrossRef]
    [Google Scholar]
  30. Leuthardt, A. & Roesel, J. L. ( 1993; ). Cloning, expression and purification of a recombinant poly-histidine-linked HIV-1 protease. FEBS Lett 326, 275–280.[CrossRef]
    [Google Scholar]
  31. Miller, M., Jaskolski, M., Rao, J. K., Leis, J. & Wlodawer, A. ( 1989; ). Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature 337, 576–579.[CrossRef]
    [Google Scholar]
  32. Mueller-Lantzsch, N., Sauter, M., Weiskircher, A., Kramer, K., Best, B., Buck, M. & Grasser, F. ( 1993; ). Human endogenous retroviral element K10 (HERV-K10) encodes a full-length gag homologous 73-kDa protein and a functional protease. AIDS Res Hum Retroviruses 9, 343–350.[CrossRef]
    [Google Scholar]
  33. Murovska, M., Lejniece, S., Kozireva, S., Koulikovska, M., Yin, H. & Blomberg, J. ( 2000; ). Human retrovirus 5 sequences in peripheral blood cells of patients with B-cell non-Hodgkin's lymphoma. Int J Cancer 85, 762–770.[CrossRef]
    [Google Scholar]
  34. Nam, S. H. & Hatanaka, M. ( 1986; ). Identification of a protease gene of human T-cell leukemia virus type I (HTLV-I) and its structural comparison. Biochem Biophys Res Commun 139, 129–135.[CrossRef]
    [Google Scholar]
  35. Orengo, C. A. ( 1999; ). CORA – topological fingerprints for protein structural families. Protein Sci 8, 699–715.
    [Google Scholar]
  36. Pichova, I., Strop, P., Sedlacek, J. & 7 other authors ( 1992; ). Isolation, biochemical characterization and crystallization of the p15gag proteinase of myeloblastosis associated virus expressed in E. coli. Int J Biochem 24, 235–242.[CrossRef]
    [Google Scholar]
  37. Rao, J. K., Erickson, J. W. & Wlodawer, A. ( 1991; ). Structural and evolutionary relationships between retroviral and eucaryotic aspartic proteinases. Biochemistry 30, 4663–4671.[CrossRef]
    [Google Scholar]
  38. Ratner, L., Haseltine, W., Patarca, R. & 7 other authors ( 1985; ). Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313, 277–284.[CrossRef]
    [Google Scholar]
  39. Rigby, S. P., Griffiths, D. J., Jarrett, R. F., Weiss, R. A. & Venables, P. J. ( 1998; ). A new human retrovirus: a role in lymphoma? Am J Med 104, 99–100.[CrossRef]
    [Google Scholar]
  40. Sali, A. & Blundell, T. L. ( 1993; ). Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779–815.[CrossRef]
    [Google Scholar]
  41. Sambrook, J. E., Fritsch, F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  42. Sellos-Moura, M. & Vogt, V. M. ( 1996; ). Proteolytic activity of purified avian sarcoma and leukemia virus NC-PR protein expressed in Escherichia coli. Virology 221, 335–345.[CrossRef]
    [Google Scholar]
  43. Sommerfelt, M. A., Petteway, S. R., Jr, Dreyer, G. B. & Hunter, E. ( 1992; ). Effect of retroviral proteinase inhibitors on Mason–Pfizer monkey virus maturation and transmembrane glycoprotein cleavage. J Virol 66, 4220–4227.
    [Google Scholar]
  44. Stříšovský, K., Smrz, D., Fehrmann, F., Krausslich, H. G. & Konvalinka, J. ( 2002; ). The murine endogenous retrovirus MIA14 encodes an active aspartic proteinase that is functionally similar to proteinases from D-type retroviruses. Arch Biochem Biophys 398, 261–268.[CrossRef]
    [Google Scholar]
  45. Umezawa, H., Aoyagi, T., Morishima, H., Matsuzaki, M. & Hamada, M. ( 1970; ). Pepstatin, a new pepsin inhibitor produced by actinomycetes. J Antibiot (Tokyo) 23, 259–262.[CrossRef]
    [Google Scholar]
  46. Vogt, V. M., Wight, A. & Eisenman, R. ( 1979; ). In vitro cleavage of avian retrovirus Gag proteins by viral protease p15. Virology 98, 154–167.[CrossRef]
    [Google Scholar]
  47. Wan, M., Takagi, M., Loh, B. N., Xu, X. Z. & Imanaka, T. ( 1996; ). Autoprocessing: an essential step for the activation of HIV-1 protease. Biochem J 316, 569–573.
    [Google Scholar]
  48. Wlodawer, A. & Gustchina, A. ( 2000; ). Structural and biochemical studies of retroviral proteases. Biochim Biophys Acta 1477, 16–34.[CrossRef]
    [Google Scholar]
  49. Wlodawer, A., Miller, M., Jaskolski, M. & 7 other authors ( 1989; ). Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 245, 616–621.[CrossRef]
    [Google Scholar]
  50. Wu, J., Adomat, J. M., Ridky, T. W., Louis, J. M., Leis, J., Harrison, R. W. & Weber, I. T. ( 1998; ). Structural basis for specificity of retroviral proteases. Biochemistry 37, 4518–4526.[CrossRef]
    [Google Scholar]
  51. Zhang, Z. Y., Poorman, R. A., Maggiora, L. L., Heinrikson, R. L. & Kezdy, F. J. ( 1991; ). Dissociative inhibition of dimeric enzymes. Kinetic characterization of the inhibition of HIV-1 protease by its COOH-terminal tetrapeptide. J Biol Chem 266, 15591–15594.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18670-0
Loading
/content/journal/jgv/10.1099/vir.0.18670-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error