1887

Abstract

The gene complement of wild-type human cytomegalovirus (HCMV) is incompletely understood, on account of the size and complexity of the viral genome and because laboratory strains have undergone deletions and rearrangements during adaptation to growth in culture. We have determined the sequence (241 087 bp) of chimpanzee cytomegalovirus (CCMV) and have compared it with published HCMV sequences from the laboratory strains AD169 and Toledo, with the aim of clarifying the gene content of wild-type HCMV. The HCMV and CCMV genomes are moderately diverged and essentially collinear. On the basis of conservation of potential protein-coding regions and other sequence features, we have discounted 51 previously proposed HCMV ORFs, modified the interpretations for 24 (including assignments of multiple exons) and proposed ten novel genes. Several errors were detected in the published HCMV sequences. We presently recognize 165 genes in CCMV and 145 in AD169; this compares with an estimate of 189 unique genes for AD169 made in 1990. Our best estimate for the complement of wild-type HCMV is 164 to 167 genes.

Erratum

This article contains a correction applying to the following content:
The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18606-0
2003-01-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/1/vir840017.html?itemId=/content/journal/jgv/10.1099/vir.0.18606-0&mimeType=html&fmt=ahah

References

  1. Adair R., Douglas E. R., Maclean J. B., Graham S. Y., Aitken J. D., Jamieson F. E., Dargan D. J.. 2002; The products of human cytomegalovirus genes UL23, UL24, UL43 and US22 are tegument components. J Gen Virol83:1315–1324
    [Google Scholar]
  2. Bahr U., Darai G.. 2001; Analysis and characterization of the complete genome of tupaia (tree shrew) herpesvirus. J Virol75:4854–4870
    [Google Scholar]
  3. Baldick C. J. Jr., Shenk T.. 1996; Proteins associated with purified human cytomegalovirus particles. J Virol70:6097–6105
    [Google Scholar]
  4. Beck S., Barrell B. G.. 1988; Human cytomegalovirus encodes a glycoprotein homologous to MHC class I antigens. Nature331:269–272
    [Google Scholar]
  5. Cha T. A., Tom E., Kemble G. W., Duke G. M., Mocarski E. S., Spaete R. R.. 1996; Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol70:78–83
    [Google Scholar]
  6. Chambers J., Angulo A., Amaratunga D.. 9 other authors 1999; DNA microarrays of the complex human cytomegalovirus genome: profiling kinetic class with drug sensitivity of viral gene expression. J Virol73:5757–5766
    [Google Scholar]
  7. Chan Y. J., Chiou C. J., Huang Q., Hayward G. S.. 1996; Synergistic interactions between overlapping binding sites for the serum response factor and ELK-1 proteins mediate both basal enhancement and phorbol ester responsiveness of primate cytomegalovirus major immediate-early promoters in monocyte and T-lymphocyte cell types. J Virol70:8590–8605
    [Google Scholar]
  8. Chang Y., Jeang K., Lietman T., Hayward G. S.. 1995; Structural organization of the spliced immediate-early gene complex that encodes the major acidic nuclear (ie1) and transactivator (ie2) proteins of African green monkey cytomegalovirus. J Biomed Sci2:105–130
    [Google Scholar]
  9. Chee M. S., Bankier A. T., Beck S.. 12 other authors 1990; Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol154:125–169
    [Google Scholar]
  10. Dargan D. J., Jamieson F. E., Maclean J., Dolan A., Addison C., McGeoch D. J.. 1997; The published DNA sequence of the human cytomegalovirus strain AD169 lacks 929 base pairs affecting genes UL42 and UL43. J Virol71:9833–9836
    [Google Scholar]
  11. Davis-Poynter N. J., Lynch D. M., Vally H., Shellam G. R., Rawlinson W. D., Barrell B. G., Farrell H. E.. 1997; Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol71:1521–1529
    [Google Scholar]
  12. Davison A. J., Telford E. A. R.. 1994; Large scale DNA sequencing by manual methods. In Methods Gene Technologyvol. 2 pp151–175 Edited by Dale J. W., Sanders P. G.. London: JAI Press;
    [Google Scholar]
  13. Dolan A., Jamieson F. E., Cunningham C., Barnett B. C., McGeoch D. J.. 1998; The genome sequence of herpes simplex virus type 2. J Virol72:2010–2021
    [Google Scholar]
  14. Dominguez G., Dambaugh T. R., Stamey F. R., Dewhurst S., Inoue N., Pellett P. E.. 1999; Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol73:8040–8052
    [Google Scholar]
  15. Ewing B., Green P.. 1998; Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res8:186–194
    [Google Scholar]
  16. Ewing B., Hillier L., Wendl M. C., Green P.. 1998; Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res8:175–185
    [Google Scholar]
  17. Goldmacher V. S., Bartle L. M., Skaletskaya A.. 10 other authors 1999; A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A96:12536–12541
    [Google Scholar]
  18. Gompels U. A., Nicholas J., Lawrence G., Jones M., Thomson B. J., Martin M. E. D., Efstathiou S., Craxton M., Macaulay H. A.. 1995; The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology209:29–51
    [Google Scholar]
  19. Greenaway P. J., Wilkinson G. W.. 1987; Nucleotide sequence of the most abundantly transcribed early gene of human cytomegalovirus strain AD169. Virus Res7:17–31
    [Google Scholar]
  20. Huang E. S., Kilpatrick B., Lakeman A., Alford C. A.. 1978; Genetic analysis of a cytomegalovirus-like agent isolated from human brain. J Virol26:718–723
    [Google Scholar]
  21. Huang L., Zhu Y., Anders D. G.. 1996; The variable 3′ ends of a human cytomegalovirus oriLyt transcript (SRT) overlap an essential, conserved replicator element. J Virol70:5272–5781
    [Google Scholar]
  22. Hutchinson N. I., Sondermeyer R. T., Tocci M. J.. 1986; Organization and expression of the major genes from the long inverted repeat of the human cytomegalovirus genome. Virology155:160–171
    [Google Scholar]
  23. Isegawa Y., Mukai T., Nakano K.. 10 other authors 1999; Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J Virol73:8053–8063
    [Google Scholar]
  24. Kotenko S. V., Saccani S., Izotova L. S., Mirochnitchenko O. V., Pestka S.. 2000; Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci U S A97:1695–1700
    [Google Scholar]
  25. Lockridge K. M., Zhou S. S., Kravitz R. H., Johnson J. L., Sawai E. T., Blewett E. L., Barry P. A.. 2000; Primate cytomegaloviruses encode and express an IL-10-like protein. Virology268:272–280
    [Google Scholar]
  26. McGeoch D. J., Dolan A., Ralph A. C.. 2000; Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol74:10401–10406
    [Google Scholar]
  27. Megaw A. G., Rapaport D., Avidor B., Frenkel N., Davison A. J.. 1998; The DNA sequence of the RK strain of human herpesvirus 7. Virology244:119–132
    [Google Scholar]
  28. Mocarski E. S., Tan Courcelle C.. 2001; Cytomegaloviruses and their replication. In Fields Virology , 4th edn.vol 2 pp 2629–2673 Edited by Knipe D. M., Howley P. M.. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  29. Mocarski E. S., Prichard M. N., Tan C. S., Brown J. M.. 1997; Reassessing the organization of the UL42-UL43 region of the human cytomegalovirus strain AD169 genome. Virology239:169–175
    [Google Scholar]
  30. Neote K., DiGregorio D., Mak J. Y., Horuk R., Schall T. J.. 1993; Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell72:415–425
    [Google Scholar]
  31. Nicholas J.. 1996; Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J Virol70:5975–5989
    [Google Scholar]
  32. Novotny J., Rigoutsos I., Coleman D., Shenk T.. 2001; In silico structural and functional analysis of the human cytomegalovirus (HHV5) genome. J Mol Biol310:1151–1166
    [Google Scholar]
  33. Pass R. F.. 2001; Cytomegalovirus. In Fields Virology . , 4th edn.vol 2 pp 2675–2705 Edited by Knipe D. M., Howley P. M.. Philadelphia: Lippincott Williams & Wilkins;
  34. Penfold M. E., Dairaghi D. J., Duke G. M., Saederup N., Mocarski E. S., Kemble G. W., Schall T. J.. 1999; Cytomegalovirus encodes a potent α chemokine. Proc Natl Acad Sci U S A96:9839–9844
    [Google Scholar]
  35. Plachter B., Traupe B., Albrecht J., Jahn G.. 1988; Abundant 5 kb RNA of human cytomegalovirus without a major translational reading frame. J Gen Virol69:2251–2266
    [Google Scholar]
  36. Prichard M. N., Penfold M. E. T., Duke G. M., Spaete R. R., Kemble G. W.. 2001; A review of genetic differences between limited and extensively passaged human cytomegalovirus strains. Rev Med Virol11:191–200
    [Google Scholar]
  37. Rawlinson W. D., Barrell B. G.. 1993; Spliced transcripts of human cytomegalovirus. J Virol67:5502–5513
    [Google Scholar]
  38. Rawlinson W. D., Farrell H. E., Barrell B. G.. 1996; Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol70:8833–8849
    [Google Scholar]
  39. Smith J. A., Pari G. S.. 1995; Human cytomegalovirus UL102 gene. J Virol69:1734–1740
    [Google Scholar]
  40. Staden R., Beal K. F., Bonfield J. K.. 2000; The Staden package, 1998. Methods Mol Biol132:115–130
    [Google Scholar]
  41. Stamminger T., Gstaiger M., Weinzierl K., Lorz K., Winkler M., Schaffner W.. 2002; Open reading frame UL26 of human cytomegalovirus encodes a novel tegument protein that contains a strong transcriptional activation domain. J Virol76:4836–4847
    [Google Scholar]
  42. Stenberg R. M., Thomsen D. R., Stinski M. F.. 1984; Structural analysis of the major immediate early gene of human cytomegalovirus. J Virol49:190–199
    [Google Scholar]
  43. Stenberg R. M., Witte P. R., Stinski M. F.. 1985; Multiple spliced and unspliced transcripts from human cytomegalovirus immediate-early region 2 and evidence for a common initiation site within immediate-early region 1. J Virol56:665–675
    [Google Scholar]
  44. Stenberg R. M., Depto A. S., Fortney J., Nelson J. A.. 1989; Regulated expression of early and late RNAs and proteins from the human cytomegalovirus immediate-early gene region. J Virol63:2699–2708
    [Google Scholar]
  45. Swinkels B. W., Geelen J. L., Wertheim-van Dillen P., van Es A. A., van der Noordaa J.. 1984; Initial characterization of four cytomegalovirus strains isolated from chimpanzees. Arch Virol82:125–128
    [Google Scholar]
  46. Taylor P.. 1986; A computer program for translating DNA sequences into protein. Nucleic Acids Res14:437–441
    [Google Scholar]
  47. Telford E. A. R., Watson M. S., Perry J., Cullinane A. A., Davison A. J.. 1998; The DNA sequence of equine herpesvirus-4. J Gen Virol79:1197–1203
    [Google Scholar]
  48. Tenney D. J., Santomenna L. D., Goudie K. B., Colberg-Poley A. M.. 1993; The human cytomegalovirus US3 immediate-early protein lacking the putative transmembrane domain regulates gene expression. Nucleic Acids Res21:2931–2937
    [Google Scholar]
  49. Vink C., Beuken E., Bruggeman C. A.. 2000; Complete DNA sequence of the rat cytomegalovirus genome. J Virol74:7656–7665
    [Google Scholar]
  50. Yu D., Smith G. A., Enquist L. W., Shenk T.. 2002; Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J Virol76:2316–2328
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18606-0
Loading
/content/journal/jgv/10.1099/vir.0.18606-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error