1887

Abstract

The unfolded protein response (UPR) is a cellular defence mechanism against high concentrations of misfolded protein in the endoplasmic reticulum (ER). In the presence of misfolded proteins, ER-transmembrane proteins PERK and IRE1α become activated. PERK phosphorylates eIF2α leading to a general inhibition of cellular translation, whilst the expression of transcription factor ATF4 is upregulated. Active IRE1α splices out an intron from XBP1 mRNA, to produce a potent transcription factor. Activation of the UPR increases the production of several proteins involved in protein folding, degradation and apoptosis. Here, we demonstrated that transient expression of chikungunya virus (CHIKV) (family , genus ) envelope glycoproteins induced the UPR and that CHIKV infection resulted in the phosphorylation of eIF2α and partial splicing of XBP1 mRNA. However, infection with CHIKV did not increase the expression of ATF4 and known UPR target genes (GRP78/BiP, GRP94 and CHOP). Moreover, nuclear XBP1 was not observed during CHIKV infection. Even upon stimulation with tunicamycin, the UPR was efficiently inhibited in CHIKV-infected cells. Individual expression of CHIKV non-structural proteins (nsPs) revealed that nsP2 alone was sufficient to inhibit the UPR. Mutations that rendered nsP2 unable to cause host-cell shut-off prevented nsP2-mediated inhibition of the UPR. This indicates that initial UPR induction takes place in the ER but that expression of functional UPR transcription factors and target genes is efficiently inhibited by CHIKV nsP2.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.071845-0
2015-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/3/580.html?itemId=/content/journal/jgv/10.1099/vir.0.071845-0&mimeType=html&fmt=ahah

References

  1. Akhrymuk I., Kulemzin S. V., Frolova E. I.. ( 2012;). Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. . J Virol 86:, 7180–7191. [CrossRef][PubMed]
    [Google Scholar]
  2. Ambrose R. L., Mackenzie J. M.. ( 2011;). West Nile virus differentially modulates the unfolded protein response to facilitate replication and immune evasion. . J Virol 85:, 2723–2732. [CrossRef][PubMed]
    [Google Scholar]
  3. Barry G., Fragkoudis R., Ferguson M. C., Lulla A., Merits A., Kohl A., Fazakerley J. K.. ( 2010;). Semliki Forest virus-induced endoplasmic reticulum stress accelerates apoptotic death of mammalian cells. . J Virol 84:, 7369–7377. [CrossRef][PubMed]
    [Google Scholar]
  4. Bertolotti A., Zhang Y., Hendershot L. M., Harding H. P., Ron D.. ( 2000;). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. . Nat Cell Biol 2:, 326–332. [CrossRef][PubMed]
    [Google Scholar]
  5. Bouraï M., Lucas-Hourani M., Gad H. H., Drosten C., Jacob Y., Tafforeau L., Cassonnet P., Jones L. M., Judith D.. & other authors ( 2012;). Mapping of Chikungunya virus interactions with host proteins identified nsP2 as a highly connected viral component. . J Virol 86:, 3121–3134. [CrossRef][PubMed]
    [Google Scholar]
  6. Burnett H. F., Audas T. E., Liang G., Lu R. R.. ( 2012;). Herpes simplex virus-1 disarms the unfolded protein response in the early stages of infection. . Cell Stress Chaperones 17:, 473–483. [CrossRef][PubMed]
    [Google Scholar]
  7. Chang S. C., Erwin A. E., Lee A. S.. ( 1989;). Glucose-regulated protein (GRP94 and GRP78) genes share common regulatory domains and are coordinately regulated by common trans-acting factors. . Mol Cell Biol 9:, 2153–2162.[PubMed]
    [Google Scholar]
  8. Das P. K., Merits A., Lulla A.. ( 2014;). Functional cross-talk between distant domains of Chikungunya virus non-structural protein 2 is decisive for its RNA-modulating activity. . J Biol Chem 289:, 5635–5653. [CrossRef][PubMed]
    [Google Scholar]
  9. Dryga S. A., Dryga O. A., Schlesinger S.. ( 1997;). Identification of mutations in a Sindbis virus variant able to establish persistent infection in BHK cells: the importance of a mutation in the nsP2 gene. . Virology 228:, 74–83. [CrossRef][PubMed]
    [Google Scholar]
  10. Fros J. J., Liu W. J., Prow N. A., Geertsema C., Ligtenberg M., Vanlandingham D. L., Schnettler E., Vlak J. M., Suhrbier A.. & other authors ( 2010;). Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. . J Virol 84:, 10877–10887. [CrossRef][PubMed]
    [Google Scholar]
  11. Fros J. J., van der Maten E., Vlak J. M., Pijlman G. P.. ( 2013;). The C-terminal domain of Chikungunya virus nsP2 independently governs viral RNA replication, cytopathicity, and inhibition of interferon signaling. . J Virol 87:, 10394–10400. [CrossRef][PubMed]
    [Google Scholar]
  12. Gardner J., Anraku I., Le T. T., Larcher T., Major L., Roques P., Schroder W. A., Higgs S., Suhrbier A.. ( 2010;). Chikungunya virus arthritis in adult wild-type mice. . J Virol 84:, 8021–8032. [CrossRef][PubMed]
    [Google Scholar]
  13. Gething M. J.. ( 1999;). Role and regulation of the ER chaperone BiP. . Semin Cell Dev Biol 10:, 465–472. [CrossRef][PubMed]
    [Google Scholar]
  14. Gonzalez-Hernandez M. J., Pal A., Gyan K. E., Charbonneau M.-E., Showalter H. D., Donato N. J., O’Riordan M., Wobus C. E.. ( 2014;). Chemical derivatives of a small molecule deubiquitinase inhibitor have antiviral activity against several RNA viruses. . PLoS ONE 9:, e94491. [CrossRef][PubMed]
    [Google Scholar]
  15. Gorchakov R., Frolova E., Williams B. R. G., Rice C. M., Frolov I.. ( 2004;). PKR-dependent and -independent mechanisms are involved in translational shutoff during Sindbis virus infection. . J Virol 78:, 8455–8467. [CrossRef][PubMed]
    [Google Scholar]
  16. Gorchakov R., Frolova E., Frolov I.. ( 2005;). Inhibition of transcription and translation in Sindbis virus-infected cells. . J Virol 79:, 9397–9409. [CrossRef][PubMed]
    [Google Scholar]
  17. Groskreutz D. J., Babor E. C., Monick M. M., Varga S. M., Hunninghake G. W.. ( 2010;). Respiratory syncytial virus limits α subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation to maintain translation and viral replication. . J Biol Chem 285:, 24023–24031. [CrossRef][PubMed]
    [Google Scholar]
  18. Harding H. P., Novoa I., Zhang Y., Zeng H., Wek R., Schapira M., Ron D.. ( 2000;). Regulated translation initiation controls stress-induced gene expression in mammalian cells. . Mol Cell 6:, 1099–1108. [CrossRef][PubMed]
    [Google Scholar]
  19. Harding H. P., Calfon M., Urano F., Novoa I., Ron D.. ( 2002;). Transcriptional and translational control in the mammalian unfolded protein response. . Annu Rev Cell Dev Biol 18:, 575–599. [CrossRef][PubMed]
    [Google Scholar]
  20. Haze K., Yoshida H., Yanagi H., Yura T., Mori K.. ( 1999;). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. . Mol Biol Cell 10:, 3787–3799. [CrossRef][PubMed]
    [Google Scholar]
  21. He B.. ( 2006;). Viruses, endoplasmic reticulum stress, and interferon responses. . Cell Death Differ 13:, 393–403. [CrossRef][PubMed]
    [Google Scholar]
  22. Horwood P. F., Reimer L. J., Dagina R., Susapu M., Bande G., Katusele M., Koimbu G., Jimmy S., Ropa B.. & other authors ( 2013;). Outbreak of Chikungunya virus infection, Vanimo, Papua New Guinea. . Emerg Infect Dis 19:, 1535–1538. [CrossRef][PubMed]
    [Google Scholar]
  23. Isler J. A., Skalet A. H., Alwine J. C.. ( 2005;). Human cytomegalovirus infection activates and regulates the unfolded protein response. . J Virol 79:, 6890–6899. [CrossRef][PubMed]
    [Google Scholar]
  24. Jose J., Snyder J. E., Kuhn R. J.. ( 2009;). A structural and functional perspective of alphavirus replication and assembly. . Future Microbiol 4:, 837–856. [CrossRef][PubMed]
    [Google Scholar]
  25. Kohno K.. ( 2010;). Stress-sensing mechanisms in the unfolded protein response: similarities and differences between yeast and mammals. . J Biochem 147:, 27–33. [CrossRef][PubMed]
    [Google Scholar]
  26. Lee A.-H., Iwakoshi N. N., Glimcher L. H.. ( 2003;). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. . Mol Cell Biol 23:, 7448–7459. [CrossRef][PubMed]
    [Google Scholar]
  27. Leparc-Goffart I., Nougairede A., Cassadou S., Prat C., de Lamballerie X.. ( 2014;). Chikungunya in the Americas. . Lancet 383:, 514. [CrossRef][PubMed]
    [Google Scholar]
  28. McCarthy M.. ( 2014;). First case of locally acquired Chikungunya is reported in US. . BMJ 349:, g4706. [CrossRef][PubMed]
    [Google Scholar]
  29. Metz S. W., Geertsema C., Martina B. E., Andrade P., Heldens J. G., van Oers M. M., Goldbach R. W., Vlak J. M., Pijlman G. P.. ( 2011;). Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells. . Virol J 8:, 353. [CrossRef][PubMed]
    [Google Scholar]
  30. Metz S. W., Gardner J., Geertsema C., Le T. T., Goh L., Vlak J. M., Suhrbier A., Pijlman G. P.. ( 2013;). Effective Chikungunya virus-like particle vaccine produced in insect cells. . PLoS Negl Trop Dis 7:, e2124. [CrossRef][PubMed]
    [Google Scholar]
  31. Nivitchanyong T., Tsai Y. C., Betenbaugh M. J., Oyler G. A.. ( 2009;). An improved in vitro and in vivo Sindbis virus expression system through host and virus engineering. . Virus Res 141:, 1–12. [CrossRef][PubMed]
    [Google Scholar]
  32. Parola P., de Lamballerie X., Jourdan J., Rovery C., Vaillant V., Minodier P., Brouqui P., Flahault A., Raoult D., Charrel R. N.. ( 2006;). Novel Chikungunya virus variant in travelers returning from Indian Ocean islands. . Emerg Infect Dis 12:, 1493–1499. [CrossRef][PubMed]
    [Google Scholar]
  33. Perry J. W., Ahmed M., Chang K.-O., Donato N. J., Showalter H. D., Wobus C. E.. ( 2012;). Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response. . PLoS Pathog 8:, e1002783. [CrossRef][PubMed]
    [Google Scholar]
  34. Poo Y. S., Nakaya H., Gardner J., Larcher T., Schroder W. A., Le T. T., Major L. D., Suhrbier A.. ( 2014;). CCR2 deficiency promotes exacerbated chronic erosive neutrophil-dominated Chikungunya virus arthritis. . J Virol 88:, 6862–6872. [CrossRef][PubMed]
    [Google Scholar]
  35. Rathore A. P. S., Ng M.-L., Vasudevan S. G.. ( 2013;). Differential unfolded protein response during Chikungunya and Sindbis virus infection: CHIKV nsP4 suppresses eIF2α phosphorylation. . Virol J 10:, 36. [CrossRef][PubMed]
    [Google Scholar]
  36. Ron D., Walter P.. ( 2007;). Signal integration in the endoplasmic reticulum unfolded protein response. . Nat Rev Mol Cell Biol 8:, 519–529. [CrossRef][PubMed]
    [Google Scholar]
  37. Rudd P. A., Wilson J., Gardner J., Larcher T., Babarit C., Le T. T., Anraku I., Kumagai Y., Loo Y. M.. & other authors ( 2012;). Interferon response factors 3 and 7 protect against Chikungunya virus hemorrhagic fever and shock. . J Virol 86:, 9888–9898. [CrossRef][PubMed]
    [Google Scholar]
  38. Scholte F. E. M., Tas A., Martina B. E. E., Cordioli P., Narayanan K., Makino S., Snijder E. J., van Hemert M. J.. ( 2013;). Characterization of synthetic Chikungunya viruses based on the consensus sequence of recent E1-226V isolates. . PLoS ONE 8:, e71047. [CrossRef][PubMed]
    [Google Scholar]
  39. Shaffer A. L., Shapiro-Shelef M., Iwakoshi N. N., Lee A.-H., Qian S.-B., Zhao H., Yu X., Yang L., Tan B. K.. & other authors ( 2004;). XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. . Immunity 21:, 81–93. [CrossRef][PubMed]
    [Google Scholar]
  40. Smith J. A.. ( 2014;). A new paradigm: innate immune sensing of viruses via the unfolded protein response. . Front Microbiol 5:, 222. [CrossRef][PubMed]
    [Google Scholar]
  41. Strauss J. H., Strauss E. G.. ( 1994;). The alphaviruses: gene expression, replication, and evolution. . Microbiol Rev 58:, 491–562.[PubMed]
    [Google Scholar]
  42. Suhrbier A., Jaffar-Bandjee M.-C., Gasque P.. ( 2012;). Arthritogenic alphaviruses – an overview. . Nat Rev Rheumatol 8:, 420–429. [CrossRef][PubMed]
    [Google Scholar]
  43. Takayanagi S., Fukuda R., Takeuchi Y., Tsukada S., Yoshida K.. ( 2013;). Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress. . Cell Stress Chaperones 18:, 11–23. [CrossRef][PubMed]
    [Google Scholar]
  44. Tamm K., Merits A., Sarand I.. ( 2008;). Mutations in the nuclear localization signal of nsP2 influencing RNA synthesis, protein expression and cytotoxicity of Semliki Forest virus. . J Gen Virol 89:, 676–686. [CrossRef][PubMed]
    [Google Scholar]
  45. Tardif K. D., Mori K., Siddiqui A.. ( 2002;). Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway. . J Virol 76:, 7453–7459. [CrossRef][PubMed]
    [Google Scholar]
  46. Vattem K. M., Wek R. C.. ( 2004;). Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. . Proc Natl Acad Sci U S A 101:, 11269–11274. [CrossRef][PubMed]
    [Google Scholar]
  47. Ventoso I., Sanz M. A., Molina S., Berlanga J. J., Carrasco L., Esteban M.. ( 2006;). Translational resistance of late alphavirus mRNA to eIF2α phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR. . Genes Dev 20:, 87–100. [CrossRef][PubMed]
    [Google Scholar]
  48. White L. K., Sali T., Alvarado D., Gatti E., Pierre P., Streblow D., Defilippis V. R.. ( 2011;). Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shutoff. . J Virol 85:, 606–620. [CrossRef][PubMed]
    [Google Scholar]
  49. Yamamoto K., Yoshida H., Kokame K., Kaufman R. J., Mori K.. ( 2004;). Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. . J Biochem 136:, 343–350. [CrossRef][PubMed]
    [Google Scholar]
  50. Yamamoto K., Sato T., Matsui T., Sato M., Okada T., Yoshida H., Harada A., Mori K.. ( 2007;). Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. . Dev Cell 13:, 365–376. [CrossRef][PubMed]
    [Google Scholar]
  51. Yoshida H., Matsui T., Yamamoto A., Okada T., Mori K.. ( 2001;). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. . Cell 107:, 881–891. [CrossRef][PubMed]
    [Google Scholar]
  52. Yoshida H., Oku M., Suzuki M., Mori K.. ( 2006;). pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. . J Cell Biol 172:, 565–575. [CrossRef][PubMed]
    [Google Scholar]
  53. Zhang K., Kaufman R. J.. ( 2008;). From endoplasmic-reticulum stress to the inflammatory response. . Nature 454:, 455–462. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.071845-0
Loading
/content/journal/jgv/10.1099/vir.0.071845-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error