1887

Abstract

Shrews are small insectivorous mammals that are distributed worldwide. Similar to rodents, shrews live on the ground and are commonly found near human residences. In this study, we investigated the enteric virome of wild shrews in the genus using a sequence-independent viral metagenomics approach. A large portion of the shrew enteric virome was composed of insect viruses, whilst novel viruses including cyclovirus, picornavirus and picorna-like virus were also identified. Several cycloviruses, including variants of human cycloviruses detected in cerebrospinal fluid and stools, were detected in wild shrews at a high prevalence rate. The identified picornavirus was distantly related to human parechovirus, inferring the presence of a new genus in this family. The identified picorna-like viruses were characterized as different species of calhevirus 1, which was discovered previously in human stools. Complete or nearly complete genome sequences of these novel viruses were determined in this study and then were subjected to further genetic characterization. Our study provides an initial view of the diversity and distinctiveness of the shrew enteric virome and highlights unique novel viruses related to human stool-associated viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.071209-0
2015-02-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/2/440.html?itemId=/content/journal/jgv/10.1099/vir.0.071209-0&mimeType=html&fmt=ahah

References

  1. Adams M. J., King A. M. Q., Carstens E. B.. ( 2013;). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2013). . Arch Virol 158:, 2023–2030. [CrossRef][PubMed]
    [Google Scholar]
  2. Allander T., Emerson S. U., Engle R. E., Purcell R. H., Bukh J.. ( 2001;). A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. . Proc Natl Acad Sci U S A 98:, 11609–11614. [CrossRef][PubMed]
    [Google Scholar]
  3. Anthony S. J., Epstein J. H., Murray K. A., Navarrete-Macias I., Zambrana-Torrelio C. M., Solovyov A., Ojeda-Flores R., Arrigo N. C., Islam A.. & other authors ( 2013;). A strategy to estimate unknown viral diversity in mammals. . MBio 4:, e00598-e13. [CrossRef][PubMed]
    [Google Scholar]
  4. Baker K. S., Leggett R. M., Bexfield N. H., Alston M., Daly G., Todd S., Tachedjian M., Holmes C. E., Crameri S.. & other authors ( 2013;). Metagenomic study of the viruses of African straw-coloured fruit bats: detection of a chiropteran poxvirus and isolation of a novel adenovirus. . Virology 441:, 95–106. [CrossRef][PubMed]
    [Google Scholar]
  5. Blom N., Hansen J., Brunak S., Blaas D.. ( 1996;). Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. . Protein Sci 5:, 2203–2216. [CrossRef][PubMed]
    [Google Scholar]
  6. Bodewes R., van der Giessen J., Haagmans B. L., Osterhaus A. D., Smits S. L.. ( 2013;). Identification of multiple novel viruses, including a parvovirus and a hepevirus, in feces of red foxes. . J Virol 87:, 7758–7764. [CrossRef][PubMed]
    [Google Scholar]
  7. Bonning B. C., Miller W. A.. ( 2010;). Dicistroviruses. . Annu Rev Entomol 55:, 129–150. [CrossRef][PubMed]
    [Google Scholar]
  8. Boros Á., Nemes C., Pankovics P., Kapusinszky B., Delwart E., Reuter G.. ( 2012;). Identification and complete genome characterization of a novel picornavirus in turkey (Meleagris gallopavo). . J Gen Virol 93:, 2171–2182. [CrossRef][PubMed]
    [Google Scholar]
  9. Boros A., Nemes C., Pankovics P., Kapusinszky B., Delwart E., Reuter G.. ( 2013;). Genetic characterization of a novel picornavirus in turkeys (Meleagris gallopavo) distinct from turkey galliviruses and megriviruses and distantly related to the members of the genus Avihepatovirus. . J Gen Virol 94:, 1496–1509. [CrossRef][PubMed]
    [Google Scholar]
  10. Dacheux L., Cervantes-Gonzalez M., Guigon G., Thiberge J. M., Vandenbogaert M., Maufrais C., Caro V., Bourhy H.. ( 2014;). A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. . PLoS ONE 9:, e87194. [CrossRef][PubMed]
    [Google Scholar]
  11. Dayaram A., Potter K. A., Moline A. B., Rosenstein D. D., Marinov M., Thomas J. E., Breitbart M., Rosario K., Argüello-Astorga G. R., Varsani A.. ( 2013;). High global diversity of cycloviruses amongst dragonflies. . J Gen Virol 94:, 1827–1840. [CrossRef][PubMed]
    [Google Scholar]
  12. Delwart E.. ( 2013;). A roadmap to the human virome. . PLoS Pathog 9:, e1003146. [CrossRef][PubMed]
    [Google Scholar]
  13. Delwart E., Li L.. ( 2012;). Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes. . Virus Res 164:, 114–121. [CrossRef][PubMed]
    [Google Scholar]
  14. Donaldson E. F., Haskew A. N., Gates J. E., Huynh J., Moore C. J., Frieman M. B.. ( 2010;). Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. . J Virol 84:, 13004–13018. [CrossRef][PubMed]
    [Google Scholar]
  15. Dubey S., Antonin M., Denys C., Vogel P.. ( 2007;). Use of phylogeny to resolve the taxonomy of the widespread and highly polymorphic African giant shrews (Crocidura olivieri group, Crocidurinae, Mammalia). . Zoology (Jena) 110:, 48–57. [CrossRef][PubMed]
    [Google Scholar]
  16. Dürrwald R., Kolodziejek J., Weissenböck H., Nowotny N.. ( 2014;). The bicolored white-toothed shrew Crocidura leucodon (HERMANN 1780) is an indigenous host of mammalian Borna disease virus. . PLoS ONE 9:, e93659. [CrossRef][PubMed]
    [Google Scholar]
  17. Esposito S., Rahamat-Langendoen J., Ascolese B., Senatore L., Castellazzi L., Niesters H. G.. ( 2014;). Pediatric parechovirus infections. . J Clin Virol 60:, 84–89. [CrossRef][PubMed]
    [Google Scholar]
  18. Firth C., Lipkin W. I.. ( 2013;). The genomics of emerging pathogens. . Annu Rev Genomics Hum Genet 14:, 281–300. [CrossRef][PubMed]
    [Google Scholar]
  19. Ge X., Li J., Peng C., Wu L., Yang X., Wu Y., Zhang Y., Shi Z.. ( 2011;). Genetic diversity of novel circular ssDNA viruses in bats in China. . J Gen Virol 92:, 2646–2653. [CrossRef][PubMed]
    [Google Scholar]
  20. Ge X., Li Y., Yang X., Zhang H., Zhou P., Zhang Y., Shi Z.. ( 2012;). Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. . J Virol 86:, 4620–4630. [CrossRef][PubMed]
    [Google Scholar]
  21. Goodfellow I.. ( 2011;). The genome-linked protein VPg of vertebrate viruses – a multifaceted protein. . Curr Opin Virol 1:, 355–362. [CrossRef][PubMed]
    [Google Scholar]
  22. Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V.. ( 1989;). Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. . FEBS Lett 243:, 103–114. [CrossRef][PubMed]
    [Google Scholar]
  23. Guo W. P., Lin X. D., Wang W., Tian J. H., Cong M. L., Zhang H. L., Wang M. R., Zhou R. H., Wang J. B.. & other authors ( 2013;). Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents. . PLoS Pathog 9:, e1003159. [CrossRef][PubMed]
    [Google Scholar]
  24. Handley S. A., Thackray L. B., Zhao G., Presti R., Miller A. D., Droit L., Abbink P., Maxfield L. F., Kambal A.. & other authors ( 2012;). Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. . Cell 151:, 253–266. [CrossRef][PubMed]
    [Google Scholar]
  25. Hilbe M., Herrsche R., Kolodziejek J., Nowotny N., Zlinszky K., Ehrensperger F.. ( 2006;). Shrews as reservoir hosts of borna disease virus. . Emerg Infect Dis 12:, 675–677. [CrossRef][PubMed]
    [Google Scholar]
  26. Honkavuori K. S., Shivaprasad H. L., Briese T., Street C., Hirschberg D. L., Hutchison S. K., Lipkin W. I.. ( 2011;). Novel picornavirus in Turkey poults with hepatitis, California, USA. . Emerg Infect Dis 17:, 480–487. [CrossRef][PubMed]
    [Google Scholar]
  27. Huson D. H., Auch A. F., Qi J., Schuster S. C.. ( 2007;). megan analysis of metagenomic data. . Genome Res 17:, 377–386. [CrossRef][PubMed]
    [Google Scholar]
  28. Joffret M. L., Bouchier C., Grandadam M., Zeller H., Maufrais C., Bourhy H., Despres P., Delpeyroux F., Dacheux L.. ( 2013;). Genomic characterization of Sebokele virus 1 (SEBV1) reveals a new candidate species among the genus Parechovirus. . J Gen Virol 94:, 1547–1553. [CrossRef][PubMed]
    [Google Scholar]
  29. Kamer G., Argos P.. ( 1984;). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. . Nucleic Acids Res 12:, 7269–7282. [CrossRef][PubMed]
    [Google Scholar]
  30. Kapoor A., Victoria J., Simmonds P., Slikas E., Chieochansin T., Naeem A., Shaukat S., Sharif S., Alam M. M.. & other authors ( 2008a;). A highly prevalent and genetically diversified Picornaviridae genus in South Asian children. . Proc Natl Acad Sci U S A 105:, 20482–20487. [CrossRef][PubMed]
    [Google Scholar]
  31. Kapoor A., Victoria J., Simmonds P., Wang C., Shafer R. W., Nims R., Nielsen O., Delwart E.. ( 2008b;). A highly divergent picornavirus in a marine mammal. . J Virol 82:, 311–320. [CrossRef][PubMed]
    [Google Scholar]
  32. Kapoor A., Simmonds P., Lipkin W. I., Zaidi S., Delwart E.. ( 2010;). Use of nucleotide composition analysis to infer hosts for three novel picorna-like viruses. . J Virol 84:, 10322–10328. [CrossRef][PubMed]
    [Google Scholar]
  33. King A. M., Adams M. J., Lefkowitz E. J., Carstens E. B.. ( 2012;). Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego:: Elsevier Academic Press;.
    [Google Scholar]
  34. Le Gall O., Christian P., Fauquet C. M., King A. M., Knowles N. J., Nakashima N., Stanway G., Gorbalenya A. E.. ( 2008;). Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. . Arch Virol 153:, 715–727. [CrossRef][PubMed]
    [Google Scholar]
  35. Li Z., Yu M., Zhang H., Wang H. Y., Wang L. F.. ( 2005;). Improved rapid amplification of cDNA ends (RACE) for mapping both the 5′ and 3′ terminal sequences of paramyxovirus genomes. . J Virol Methods 130:, 154–156. [CrossRef][PubMed]
    [Google Scholar]
  36. Li L., Victoria J., Kapoor A., Blinkova O., Wang C., Babrzadeh F., Mason C. J., Pandey P., Triki H.. & other authors ( 2009;). A novel picornavirus associated with gastroenteritis. . J Virol 83:, 12002–12006. [CrossRef][PubMed]
    [Google Scholar]
  37. Li L., Kapoor A., Slikas B., Bamidele O. S., Wang C., Shaukat S., Masroor M. A., Wilson M. L., Ndjango J. B.. & other authors ( 2010a;). Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. . J Virol 84:, 1674–1682. [CrossRef][PubMed]
    [Google Scholar]
  38. Li L., Victoria J. G., Wang C., Jones M., Fellers G. M., Kunz T. H., Delwart E.. ( 2010b;). Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. . J Virol 84:, 6955–6965. [CrossRef][PubMed]
    [Google Scholar]
  39. Li L., Shan T., Soji O. B., Alam M. M., Kunz T. H., Zaidi S. Z., Delwart E.. ( 2011a;). Possible cross-species transmission of circoviruses and cycloviruses among farm animals. . J Gen Virol 92:, 768–772. [CrossRef][PubMed]
    [Google Scholar]
  40. Li L., Shan T., Wang C., Côté C., Kolman J., Onions D., Gulland F. M., Delwart E.. ( 2011b;). The fecal viral flora of California sea lions. . J Virol 85:, 9909–9917. [CrossRef][PubMed]
    [Google Scholar]
  41. Lim E. S., Cao S., Holtz L. R., Antonio M., Stine O. C., Wang D.. ( 2014;). Discovery of rosavirus 2, a novel variant of a rodent-associated picornavirus, in children from The Gambia. . Virology 454-455:, 25–33. [CrossRef][PubMed]
    [Google Scholar]
  42. Lole K. S., Bollinger R. C., Paranjape R. S., Gadkari D., Kulkarni S. S., Novak N. G., Ingersoll R., Sheppard H. W., Ray S. C.. ( 1999;). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. . J Virol 73:, 152–160.[PubMed]
    [Google Scholar]
  43. Luke G. A., de Felipe P., Lukashev A., Kallioinen S. E., Bruno E. A., Ryan M. D.. ( 2008;). Occurrence, function and evolutionary origins of ‘2A-like’ sequences in virus genomes. . J Gen Virol 89:, 1036–1042. [CrossRef][PubMed]
    [Google Scholar]
  44. Lysholm F., Wetterbom A., Lindau C., Darban H., Bjerkner A., Fahlander K., Lindberg A. M., Persson B., Allander T., Andersson B.. ( 2012;). Characterization of the viral microbiome in patients with severe lower respiratory tract infections, using metagenomic sequencing. . PLoS ONE 7:, e30875. [CrossRef][PubMed]
    [Google Scholar]
  45. Malboeuf C. M., Yang X., Charlebois P., Qu J., Berlin A. M., Casali M., Pesko K. N., Boutwell C. L., DeVincenzo J. P.. & other authors ( 2013;). Complete viral RNA genome sequencing of ultra-low copy samples by sequence-independent amplification. . Nucleic Acids Res 41:, e13. [CrossRef][PubMed]
    [Google Scholar]
  46. Meerburg B. G., Singleton G. R., Kijlstra A.. ( 2009;). Rodent-borne diseases and their risks for public health. . Crit Rev Microbiol 35:, 221–270. [CrossRef][PubMed]
    [Google Scholar]
  47. Mokili J. L., Rohwer F., Dutilh B. E.. ( 2012;). Metagenomics and future perspectives in virus discovery. . Curr Opin Virol 2:, 63–77. [CrossRef][PubMed]
    [Google Scholar]
  48. Morse S. S., Mazet J. A., Woolhouse M., Parrish C. R., Carroll D., Karesh W. B., Zambrana-Torrelio C., Lipkin W. I., Daszak P.. ( 2012;). Prediction and prevention of the next pandemic zoonosis. . Lancet 380:, 1956–1965. [CrossRef][PubMed]
    [Google Scholar]
  49. Nakashima N., Uchiumi T.. ( 2009;). Functional analysis of structural motifs in dicistroviruses. . Virus Res 139:, 137–147. [CrossRef][PubMed]
    [Google Scholar]
  50. Ng T. F., Marine R., Wang C., Simmonds P., Kapusinszky B., Bodhidatta L., Oderinde B. S., Wommack K. E., Delwart E.. ( 2012;). High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. . J Virol 86:, 12161–12175. [CrossRef][PubMed]
    [Google Scholar]
  51. Ng T. F., Mesquita J. R., Nascimento M. S., Kondov N. O., Wong W., Reuter G., Knowles N. J., Vega E., Esona M. D.. & other authors ( 2014;). Feline fecal virome reveals novel and prevalent enteric viruses. . Vet Microbiol 171:, 102–111. [CrossRef][PubMed]
    [Google Scholar]
  52. Niklasson B., Kinnunen L., Hörnfeldt B., Hörling J., Benemar C., Hedlund K. O., Matskova L., Hyypiä T., Winberg G.. ( 1999;). A new picornavirus isolated from bank voles (Clethrionomys glareolus). . Virology 255:, 86–93. [CrossRef][PubMed]
    [Google Scholar]
  53. Padilla-Rodriguez M., Rosario K., Breitbart M.. ( 2013;). Novel cyclovirus discovered in the Florida woods cockroach Eurycotis floridana (Walker). . Arch Virol 158:, 1389–1392. [CrossRef][PubMed]
    [Google Scholar]
  54. Phan T. G., Kapusinszky B., Wang C., Rose R. K., Lipton H. L., Delwart E. L.. ( 2011;). The fecal viral flora of wild rodents. . PLoS Pathog 7:, e1002218. [CrossRef][PubMed]
    [Google Scholar]
  55. Phan T. G., Vo N. P., Boros Á., Pankovics P., Reuter G., Li O. T., Wang C., Deng X., Poon L. L., Delwart E.. ( 2013a;). The viruses of wild pigeon droppings. . PLoS One 8:, e72787. [CrossRef][PubMed]
    [Google Scholar]
  56. Phan T. G., Vo N. P., Simmonds P., Samayoa E., Naccache S., Chiu C. Y., Delwart E.. ( 2013b;). Rosavirus: the prototype of a proposed new genus of the Picornaviridae family. . Virus Genes 47:, 556–558. [CrossRef][PubMed]
    [Google Scholar]
  57. Phan T. G., Luchsinger V., Avendaño L. F., Deng X., Delwart E.. ( 2014;). Cyclovirus in nasopharyngeal aspirates of Chilean children with respiratory infections. . J Gen Virol 95:, 922–927. [CrossRef][PubMed]
    [Google Scholar]
  58. Reuter G., Pankovics P., Knowles N. J., Boros Á.. ( 2012;). Two closely related novel picornaviruses in cattle and sheep in Hungary from 2008 to 2009, proposed as members of a new genus in the family Picornaviridae. . J Virol 86:, 13295–13302. [CrossRef][PubMed]
    [Google Scholar]
  59. Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J. P.. ( 2012;). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. . Syst Biol 61:, 539–542. [CrossRef][PubMed]
    [Google Scholar]
  60. Rosario K., Marinov M., Stainton D., Kraberger S., Wiltshire E. J., Collings D. A., Walters M., Martin D. P., Breitbart M., Varsani A.. ( 2011;). Dragonfly cyclovirus, a novel single-stranded DNA virus discovered in dragonflies (Odonata: Anisoptera). . J Gen Virol 92:, 1302–1308. [CrossRef][PubMed]
    [Google Scholar]
  61. Rosario K., Duffy S., Breitbart M.. ( 2012;). A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. . Arch Virol 157:, 1851–1871. [CrossRef][PubMed]
    [Google Scholar]
  62. Sasaki M., Muleya W., Ishii A., Orba Y., Hang’ombe B. M., Mweene A. S., Moonga L., Thomas Y., Kimura T., Sawa H.. ( 2014;). Molecular epidemiology of paramyxoviruses in Zambian wild rodents and shrews. . J Gen Virol 95:, 325–330. [CrossRef][PubMed]
    [Google Scholar]
  63. Sauvage V., Ar Gouilh M., Cheval J., Muth E., Pariente K., Burguiere A., Caro V., Manuguerra J. C., Eloit M.. ( 2012;). A member of a new Picornaviridae genus is shed in pig feces. . J Virol 86:, 10036–10046. [CrossRef][PubMed]
    [Google Scholar]
  64. Shan T., Li L., Simmonds P., Wang C., Moeser A., Delwart E.. ( 2011;). The fecal virome of pigs on a high-density farm. . J Virol 85:, 11697–11708. [CrossRef][PubMed]
    [Google Scholar]
  65. Shirai Y., Takao Y., Mizumoto H., Tomaru Y., Honda D., Nagasaki K.. ( 2006;). Genomic and phylogenetic analysis of a single-stranded RNA virus infecting Rhizosolenia setigera (Stramenopiles: Bacillariophyceae). . J Mar Biol Assoc U K 86:, 475–483. [CrossRef]
    [Google Scholar]
  66. Simmonds P.. ( 2012;). sse: a nucleotide and amino acid sequence analysis platform. . BMC Res Notes 5:, 50. [CrossRef][PubMed]
    [Google Scholar]
  67. Smith I., Wang L. F.. ( 2013;). Bats and their virome: an important source of emerging viruses capable of infecting humans. . Curr Opin Virol 3:, 84–91. [CrossRef][PubMed]
    [Google Scholar]
  68. Smits S. L., Raj V. S., Oduber M. D., Schapendonk C. M., Bodewes R., Provacia L., Stittelaar K. J., Osterhaus A. D., Haagmans B. L.. ( 2013a;). Metagenomic analysis of the ferret fecal viral flora. . PLoS One 8:, e71595. [CrossRef][PubMed]
    [Google Scholar]
  69. Smits S. L., Zijlstra E. E., van Hellemond J. J., Schapendonk C. M., Bodewes R., Schürch A. C., Haagmans B. L., Osterhaus A. D.. ( 2013b;). Novel cyclovirus in human cerebrospinal fluid, Malawi, 2010–2011. . Emerg Infect Dis 19:, no. 9. [CrossRef][PubMed]
    [Google Scholar]
  70. Sweeney T. R., Cisnetto V., Bose D., Bailey M., Wilson J. R., Zhang X., Belsham G. J., Curry S.. ( 2010;). Foot-and-mouth disease virus 2C is a hexameric AAA+ protein with a coordinated ATP hydrolysis mechanism. . J Biol Chem 285:, 24347–24359. [CrossRef][PubMed]
    [Google Scholar]
  71. Takao Y., Mise K., Nagasaki K., Okuno T., Honda D.. ( 2006;). Complete nucleotide sequence and genome organization of a single-stranded RNA virus infecting the marine fungoid protist Schizochytrium sp. . J Gen Virol 87:, 723–733. [CrossRef][PubMed]
    [Google Scholar]
  72. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: Molecular Evolutionary Genetics Analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  73. Tan V., van Doorn H. R., Nghia H. D., Chau T. T., Tu T. P., de Vries M., Canuti M., Deijs M., Jebbink M. F.. & other authors ( 2013;). Identification of a new cyclovirus in cerebrospinal fluid of patients with acute central nervous system infections. . MBio 4:, e00231-e13. [CrossRef][PubMed]
    [Google Scholar]
  74. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  75. Trujillo-Ortiz A., Hernandez-Walls R., Perez-Osuna S.. ( 2004;). RAFisher2cda: canonical discriminant analysis. . http://www.mathworks.co.uk/matlabcentral/fileexchange/4836-rafisher2cda.
  76. van den Brand J. M., van Leeuwen M., Schapendonk C. M., Simon J. H., Haagmans B. L., Osterhaus A. D., Smits S. L.. ( 2012;). Metagenomic analysis of the viral flora of pine marten and European badger feces. . J Virol 86:, 2360–2365. [CrossRef][PubMed]
    [Google Scholar]
  77. Williams C. H., Panayiotou M., Girling G. D., Peard C. I., Oikarinen S., Hyöty H., Stanway G.. ( 2009;). Evolution and conservation in human parechovirus genomes. . J Gen Virol 90:, 1702–1712. [CrossRef][PubMed]
    [Google Scholar]
  78. Wilson D. E., Reeder D. M.. ( 2011;). Class Mammalia Linnaeus, 1758. . Zootaxa 3148:, 56–60.
    [Google Scholar]
  79. Witkowski P. T., Klempa B., Ithete N. L., Auste B., Mfune J. K., Hoveka J., Matthee S., Preiser W., Kruger D. H.. ( 2014;). Hantaviruses in Africa. . Virus Res 187:, 34–42. [CrossRef][PubMed]
    [Google Scholar]
  80. Woo P. C., Lau S. K., Huang Y., Lam C. S., Poon R. W., Tsoi H. W., Lee P., Tse H., Chan A. S.. & other authors ( 2010;). Comparative analysis of six genome sequences of three novel picornaviruses, turdiviruses 1, 2 and 3, in dead wild birds, and proposal of two novel genera, Orthoturdivirus and Paraturdivirus, in the family Picornaviridae. . J Gen Virol 91:, 2433–2448. [CrossRef][PubMed]
    [Google Scholar]
  81. Woo P. C., Lau S. K., Choi G. K., Huang Y., Teng J. L., Tsoi H. W., Tse H., Yeung M. L., Chan K. H.. & other authors ( 2012;). Natural occurrence and characterization of two internal ribosome entry site elements in a novel virus, canine picodicistrovirus, in the picornavirus-like superfamily. . J Virol 86:, 2797–2808. [CrossRef][PubMed]
    [Google Scholar]
  82. Wu Z., Ren X., Yang L., Hu Y., Yang J., He G., Zhang J., Dong J., Sun L.. & other authors ( 2012;). Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. . J Virol 86:, 10999–11012. [CrossRef][PubMed]
    [Google Scholar]
  83. Yanagihara R., Gu S. H., Arai S., Kang H. J., Song J. W.. ( 2014;). Hantaviruses: rediscovery and new beginnings. . Virus Res 187:, 6–14. [CrossRef][PubMed]
    [Google Scholar]
  84. Yozwiak N. L., Skewes-Cox P., Gordon A., Saborio S., Kuan G., Balmaseda A., Ganem D., Harris E., DeRisi J. L.. ( 2010;). Human enterovirus 109: a novel interspecies recombinant enterovirus isolated from a case of acute pediatric respiratory illness in Nicaragua. . J Virol 84:, 9047–9058. [CrossRef][PubMed]
    [Google Scholar]
  85. Yu J. M., Li X. Y., Ao Y. Y., Li L. L., Liu N., Li J. S., Duan Z. J.. ( 2013;). Identification of a novel picornavirus in healthy piglets and seroepidemiological evidence of its presence in humans. . PLoS One 8:, e70137. [CrossRef][PubMed]
    [Google Scholar]
  86. Zuker M.. ( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. . Nucleic Acids Res 31:, 3406–3415. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.071209-0
Loading
/content/journal/jgv/10.1099/vir.0.071209-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error