1887

Abstract

In human cytomegalovirus (HCMV)-infected cells, a dramatic remodelling of the nuclear architecture is linked to the creation, utilization and manipulation of subnuclear structures. This review outlines the involvement of several viral and cellular subnuclear structures in areas of HCMV replication and virus–host interaction that include viral transcription, viral DNA synthesis and the production of DNA-filled viral capsids. The structures discussed include those that promote or impede HCMV replication (such as viral replication compartments and promyelocytic leukaemia nuclear bodies, respectively) and those whose role in the infected cell is unclear (for example, nucleoli and nuclear speckles). Viral and cellular proteins associated with subnuclear structures are also discussed. The data reviewed here highlight advances in our understanding of HCMV biology and emphasize the complexity of HCMV replication and virus–host interactions in the nucleus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.071084-0
2015-02-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/2/239.html?itemId=/content/journal/jgv/10.1099/vir.0.071084-0&mimeType=html&fmt=ahah

References

  1. Ahn J. H., Hayward G. S. 1997; The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J Virol 71:4599–4613[PubMed]
    [Google Scholar]
  2. Ahn J. H., Jang W. J., Hayward G. S. 1999; The human cytomegalovirus IE2 and UL112-113 proteins accumulate in viral DNA replication compartments that initiate from the periphery of promyelocytic leukemia protein-associated nuclear bodies (PODs or ND10). J Virol 73:10458–10471[PubMed]
    [Google Scholar]
  3. Alwine J. C. 2012; The human cytomegalovirus assembly compartment: a masterpiece of viral manipulation of cellular processes that facilitates assembly and egress. PLoS Pathog 8:e1002878 [View Article][PubMed]
    [Google Scholar]
  4. Andersen J. S., Lyon C. E., Fox A. H., Leung A. K., Lam Y. W., Steen H., Mann M., Lamond A. I. 2002; Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11 [View Article][PubMed]
    [Google Scholar]
  5. Appleton B. A., Loregian A., Filman D. J., Coen D. M., Hogle J. M. 2004; The cytomegalovirus DNA polymerase subunit UL44 forms a C clamp-shaped dimer. Mol Cell 15:233–244 [View Article][PubMed]
    [Google Scholar]
  6. Appleton B. A., Brooks J., Loregian A., Filman D. J., Coen D. M., Hogle J. M. 2006; Crystal structure of the cytomegalovirus DNA polymerase subunit UL44 in complex with the C terminus from the catalytic subunit. Differences in structure and function relative to unliganded UL44. J Biol Chem 281:5224–5232 [View Article][PubMed]
    [Google Scholar]
  7. Arcangeletti M. C., Rodighiero I., De Conto F., Gatti R., Orlandini G., Ferraglia F., Motta F., Covan S., Razin S. V. et al. 2009; Modulatory effect of rRNA synthesis and ppUL83 nucleolar compartmentalization on human cytomegalovirus gene expression in vitro. J Cell Biochem 108:415–423 [View Article][PubMed]
    [Google Scholar]
  8. Azzeh M., Honigman A., Taraboulos A., Rouvinski A., Wolf D. G. 2006; Structural changes in human cytomegalovirus cytoplasmic assembly sites in the absence of UL97 kinase activity. Virology 354:69–79 [View Article][PubMed]
    [Google Scholar]
  9. Bender B. J., Coen D. M., Strang B. L. 2014; Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli. J Virol 88:11738–11747 [View Article][PubMed]
    [Google Scholar]
  10. Bogdanow B., Weisbach H., von Einem J., Straschewski S., Voigt S., Winkler M., Hagemeier C., Wiebusch L. 2013; Human cytomegalovirus tegument protein pp150 acts as a cyclin A2-CDK-dependent sensor of the host cell cycle and differentiation state. Proc Natl Acad Sci U S A 110:17510–17515 [View Article][PubMed]
    [Google Scholar]
  11. Boisvert F. M., van Koningsbruggen S., Navascués J., Lamond A. I. 2007; The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585 [View Article][PubMed]
    [Google Scholar]
  12. Boulon S., Westman B. J., Hutten S., Boisvert F. M., Lamond A. I. 2010; The nucleolus under stress. Mol Cell 40:216–227 [View Article][PubMed]
    [Google Scholar]
  13. Boutell C., Everett R. D. 2013; Regulation of alphaherpesvirus infections by the ICP0 family of proteins. J Gen Virol 94:465–481 [View Article][PubMed]
    [Google Scholar]
  14. Chambers J., Angulo A., Amaratunga D., Guo H., Jiang Y., Wan J. S., Bittner A., Frueh K., Jackson M. R. et al. 1999; DNA microarrays of the complex human cytomegalovirus genome: profiling kinetic class with drug sensitivity of viral gene expression. J Virol 73:5757–5766[PubMed]
    [Google Scholar]
  15. Chang L., Godinez W. J., Kim I. H., Tektonidis M., de Lanerolle P., Eils R., Rohr K., Knipe D. M. 2011; Herpesviral replication compartments move and coalesce at nuclear speckles to enhance export of viral late mRNA. Proc Natl Acad Sci U S A 108:E136–E144 [View Article][PubMed]
    [Google Scholar]
  16. Cosme R. S., Yamamura Y., Tang Q. 2009; Roles of polypyrimidine tract binding proteins in major immediate-early gene expression and viral replication of human cytomegalovirus. J Virol 83:2839–2850 [View Article][PubMed]
    [Google Scholar]
  17. Costa H., Nascimento R., Sinclair J., Parkhouse R. M. 2013; Human cytomegalovirus gene UL76 induces IL-8 expression through activation of the DNA damage response. PLoS Pathog 9:e1003609 [View Article][PubMed]
    [Google Scholar]
  18. Dolan A., Cunningham C., Hector R. D., Hassan-Walker A. F., Lee L., Addison C., Dargan D. J., McGeoch D. J., Gatherer D. et al. 2004; Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312 [View Article][PubMed]
    [Google Scholar]
  19. Dove B. K., You J. H., Reed M. L., Emmett S. R., Brooks G., Hiscox J. A. 2006; Changes in nucleolar morphology and proteins during infection with the coronavirus infectious bronchitis virus. Cell Microbiol 8:1147–1157 [View Article][PubMed]
    [Google Scholar]
  20. E X., Pickering M. T., Debatis M., Castillo J., Lagadinos A., Wang S., Lu S., Kowalik T. F. 2011; An E2F1-mediated DNA damage response contributes to the replication of human cytomegalovirus. PLoS Pathog 7:e1001342 [View Article][PubMed]
    [Google Scholar]
  21. Ertl P. F., Powell K. L. 1992; Physical and functional interaction of human cytomegalovirus DNA polymerase and its accessory protein (ICP36) expressed in insect cells. J Virol 66:4126–4133[PubMed]
    [Google Scholar]
  22. Everett R. D., Boutell C., Hale B. G. 2013; Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol 11:400–411 [View Article][PubMed]
    [Google Scholar]
  23. Feichtinger S., Stamminger T., Müller R., Graf L., Klebl B., Eickhoff J., Marschall M. 2011; Recruitment of cyclin-dependent kinase 9 to nuclear compartments during cytomegalovirus late replication: importance of an interaction between viral pUL69 and cyclin T1. J Gen Virol 92:1519–1531 [View Article][PubMed]
    [Google Scholar]
  24. Forest T., Barnard S., Baines J. D. 2005; Active intranuclear movement of herpesvirus capsids. Nat Cell Biol 7:429–431 [View Article][PubMed]
    [Google Scholar]
  25. Fortunato E. A., Spector D. H. 1998; p53 and RPA are sequestered in viral replication centers in the nuclei of cells infected with human cytomegalovirus. J Virol 72:2033–2039[PubMed]
    [Google Scholar]
  26. Gaddy C. E., Wong D. S., Markowitz-Shulman A., Colberg-Poley A. M. 2010; Regulation of the subcellular distribution of key cellular RNA-processing factors during permissive human cytomegalovirus infection. J Gen Virol 91:1547–1559 [View Article][PubMed]
    [Google Scholar]
  27. Gao Y., Colletti K., Pari G. S. 2008; Identification of human cytomegalovirus UL84 virus- and cell-encoded binding partners by using proteomics analysis. J Virol 82:96–104 [View Article][PubMed]
    [Google Scholar]
  28. Gatherer D., Seirafian S., Cunningham C., Holton M., Dargan D. J., Baluchova K., Hector R. D., Galbraith J., Herzyk P. et al. 2011; High-resolution human cytomegalovirus transcriptome. Proc Natl Acad Sci U S A 108:19755–19760 [View Article][PubMed]
    [Google Scholar]
  29. Gibson W. 2008; Structure and formation of the cytomegalovirus virion. Curr Top Microbiol Immunol 325:187–204[PubMed]
    [Google Scholar]
  30. Giesen K., Radsak K., Bogner E. 2000; Targeting of the gene product encoded by ORF UL56 of human cytomegalovirus into viral replication centers. FEBS Lett 471:215–218 [View Article][PubMed]
    [Google Scholar]
  31. Ginisty H., Sicard H., Roger B., Bouvet P. 1999; Structure and functions of nucleolin. J Cell Sci 112:761–772[PubMed]
    [Google Scholar]
  32. Glass M., Everett R. D. 2013; Components of promyelocytic leukemia nuclear bodies (ND10) act cooperatively to repress herpesvirus infection. J Virol 87:2174–2185 [View Article][PubMed]
    [Google Scholar]
  33. Grey F., Antoniewicz A., Allen E., Saugstad J., McShea A., Carrington J. C., Nelson J. 2005; Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 79:12095–12099 [View Article][PubMed]
    [Google Scholar]
  34. Groves I. J., Sinclair J. H. 2007; Knockdown of hDaxx in normally non-permissive undifferentiated cells does not permit human cytomegalovirus immediate-early gene expression. J Gen Virol 88:2935–2940 [View Article][PubMed]
    [Google Scholar]
  35. Hamirally S., Kamil J. P., Ndassa-Colday Y. M., Lin A. J., Jahng W. J., Baek M. C., Noton S., Silva L. A., Simpson-Holley M. et al. 2009; Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog 5:e1000275 [View Article][PubMed]
    [Google Scholar]
  36. Hiscox J. A. 2002; The nucleolus – a gateway to viral infection?. Arch Virol 147:1077–1089 [View Article][PubMed]
    [Google Scholar]
  37. Hiscox J. A., Whitehouse A., Matthews D. A. 2010; Nucleolar proteomics and viral infection. Proteomics 10:4077–4086 [View Article][PubMed]
    [Google Scholar]
  38. Hume A. J., Finkel J. S., Kamil J. P., Coen D. M., Culbertson M. R., Kalejta R. F. 2008; Phosphorylation of retinoblastoma protein by viral protein with cyclin-dependent kinase function. Science 320:797–799 [View Article][PubMed]
    [Google Scholar]
  39. Ishov A. M., Stenberg R. M., Maul G. G. 1997; Human cytomegalovirus immediate early interaction with host nuclear structures: definition of an immediate transcript environment. J Cell Biol 138:5–16 [View Article][PubMed]
    [Google Scholar]
  40. Ishov A. M., Sotnikov A. G., Negorev D., Vladimirova O. V., Neff N., Kamitani T., Yeh E. T., Strauss J. F. III, Maul G. G. 1999; PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147:221–234 [View Article][PubMed]
    [Google Scholar]
  41. Ishov A. M., Vladimirova O. V., Maul G. G. 2004; Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci 117:3807–3820 [View Article][PubMed]
    [Google Scholar]
  42. James N. J., Howell G. J., Walker J. H., Blair G. E. 2010; The role of Cajal bodies in the expression of late phase adenovirus proteins. Virology 399:299–311 [View Article][PubMed]
    [Google Scholar]
  43. Jokhi V., Ashley J., Nunnari J., Noma A., Ito N., Wakabayashi-Ito N., Moore M. J., Budnik V. 2013; Torsin mediates primary envelopment of large ribonucleoprotein granules at the nuclear envelope. Cell Rep 3:988–995 [View Article][PubMed]
    [Google Scholar]
  44. Kagele D., Rossetto C. C., Elorza M., Pari G. S. 2013; Analysis of the interactions of viral and cellular factors with human cytomegalovirus lytic origin of replication, oriLyt. Virology 424:106–114 [CrossRef]
    [Google Scholar]
  45. Kalejta R. F., Shenk T. 2003; Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc Natl Acad Sci U S A 100:3263–3268 [View Article][PubMed]
    [Google Scholar]
  46. Kang H., Kim E. T., Lee H. R., Park J. J., Go Y. Y., Choi C. Y., Ahn J. H. 2006; Inhibition of SUMO-independent PML oligomerization by the human cytomegalovirus IE1 protein. J Gen Virol 87:2181–2190 [View Article][PubMed]
    [Google Scholar]
  47. Kim Y. E., Lee J. H., Kim E. T., Shin H. J., Gu S. Y., Seol H. S., Ling P. D., Lee C. H., Ahn J. H. 2011; Human cytomegalovirus infection causes degradation of Sp100 proteins that suppress viral gene expression. J Virol 85:11928–11937 [View Article][PubMed]
    [Google Scholar]
  48. Knizewski L., Kinch L., Grishin N. V., Rychlewski L., Ginalski K. 2006; Human herpesvirus 1 UL24 gene encodes a potential PD-(D/E)XK endonuclease. J Virol 80:2575–2577 [View Article][PubMed]
    [Google Scholar]
  49. Kobiler O., Brodersen P., Taylor M. P., Ludmir E. B., Enquist L. W. 2011; Herpesvirus replication compartments originate with single incoming viral genomes. MBio 2:e00278-11 [View Article][PubMed]
    [Google Scholar]
  50. Kobiler O., Drayman N., Butin-Israeli V., Oppenheim A. 2012; Virus strategies for passing the nuclear envelope barrier. Nucleus 3:526–539 [View Article][PubMed]
    [Google Scholar]
  51. Korioth F., Maul G. G., Plachter B., Stamminger T., Frey J. 1996; The nuclear domain 10 (ND10) is disrupted by the human cytomegalovirus gene product IE1. Exp Cell Res 229:155–158 [View Article][PubMed]
    [Google Scholar]
  52. Kuny C. V., Chinchilla K., Culbertson M. R., Kalejta R. F. 2010; Cyclin-dependent kinase-like function is shared by the beta- and gamma-subset of the conserved herpesvirus protein kinases. PLoS Pathog 6:e1001092 [View Article][PubMed]
    [Google Scholar]
  53. Lamond A. I., Spector D. L. 2003; Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612 [View Article][PubMed]
    [Google Scholar]
  54. Lee H. R., Kim D. J., Lee J. M., Choi C. Y., Ahn B. Y., Hayward G. S., Ahn J. H. 2004; Ability of the human cytomegalovirus IE1 protein to modulate sumoylation of PML correlates with its functional activities in transcriptional regulation and infectivity in cultured fibroblast cells. J Virol 78:6527–6542 [View Article][PubMed]
    [Google Scholar]
  55. Lin S. R., Jiang M. J., Wang H. H., Hu C. H., Hsu M. S., Hsi E., Duh C. Y., Wang S. K. 2013; Human cytomegalovirus UL76 elicits novel aggresome formation via interaction with S5a of the ubiquitin proteasome system. J Virol 87:11562–11578 [View Article][PubMed]
    [Google Scholar]
  56. Liptak L. M., Uprichard S. L., Knipe D. M. 1996; Functional order of assembly of herpes simplex virus DNA replication proteins into prereplicative site structures. J Virol 70:1759–1767[PubMed]
    [Google Scholar]
  57. Livingston C. M., Ifrim M. F., Cowan A. E., Weller S. K. 2009; Virus-Induced Chaperone-Enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS Pathog 5:e1000619 [View Article][PubMed]
    [Google Scholar]
  58. Loregian A., Appleton B. A., Hogle J. M., Coen D. M. 2004a; Specific residues in the connector loop of the human cytomegalovirus DNA polymerase accessory protein UL44 are crucial for interaction with the UL54 catalytic subunit. J Virol 78:9084–9092 [View Article][PubMed]
    [Google Scholar]
  59. Loregian A., Appleton B. A., Hogle J. M., Coen D. M. 2004b; Residues of human cytomegalovirus DNA polymerase catalytic subunit UL54 that are necessary and sufficient for interaction with the accessory protein UL44. J Virol 78:158–167 [View Article][PubMed]
    [Google Scholar]
  60. Loveland A. N., Nguyen N. L., Brignole E. J., Gibson W. 2007; The amino-conserved domain of human cytomegalovirus UL80a proteins is required for key interactions during early stages of capsid formation and virus production. J Virol 81:620–628 [View Article][PubMed]
    [Google Scholar]
  61. Lukashchuk V., McFarlane S., Everett R. D., Preston C. M. 2008; Human cytomegalovirus protein pp71 displaces the chromatin-associated factor ATRX from nuclear domain 10 at early stages of infection. J Virol 82:12543–12554 [View Article][PubMed]
    [Google Scholar]
  62. Lymberopoulos M. H., Pearson A. 2007; Involvement of UL24 in herpes-simplex-virus-1-induced dispersal of nucleolin. Virology 363:397–409 [View Article][PubMed]
    [Google Scholar]
  63. McVoy M. A., Adler S. P. 1994; Human cytomegalovirus DNA replicates after early circularization by concatemer formation, and inversion occurs within the concatemer. J Virol 68:1040–1051[PubMed]
    [Google Scholar]
  64. McVoy M. A., Nixon D. E., Hur J. K., Adler S. P. 2000; The ends on herpesvirus DNA replicative concatemers contain pac2 cis cleavage/packaging elements and their formation is controlled by terminal cis sequences. J Virol 74:1587–1592 [View Article][PubMed]
    [Google Scholar]
  65. Milbradt J., Kraut A., Hutterer C., Sonntag E., Schmeiser C., Ferro M., Wagner S., Lenac T., Claus C. et al. 2014; Proteomic analysis of the multimeric nuclear egress complex of human cytomegalovirus. Mol Cell Proteomics 13:2132–2146 [View Article][PubMed]
    [Google Scholar]
  66. Miller M. S., Furlong W. E., Pennell L., Geadah M., Hertel L. 2010; RASCAL is a new human cytomegalovirus-encoded protein that localizes to the nuclear lamina and in cytoplasmic vesicles at late times postinfection. J Virol 84:6483–6496 [View Article][PubMed]
    [Google Scholar]
  67. Mocarski E. S., Shenk T., Pass R. F. 2007; Cytomegaloviruses. In Fields Virology, 5th edn. vol. 2 pp. 2701–2772 Edited by Knipe D. M., Howley P. M. New York, NY: Lippincott, Williams & Wilkins;
    [Google Scholar]
  68. Moldovan G. L., Pfander B., Jentsch S. 2007; PCNA, the maestro of the replication fork. Cell 129:665–679 [View Article][PubMed]
    [Google Scholar]
  69. Nguyen N. L., Loveland A. N., Gibson W. 2008; Nuclear localization sequences in cytomegalovirus capsid assembly proteins (UL80 proteins) are required for virus production: inactivating NLS1, NLS2, or both affects replication to strikingly different extents. J Virol 82:5381–5389 [View Article][PubMed]
    [Google Scholar]
  70. O’Dowd J. M., Zavala A. G., Brown C. J., Mori T., Fortunato E. A. 2012; HCMV-infected cells maintain efficient nucleotide excision repair of the viral genome while abrogating repair of the host genome. PLoS Pathog 8:e1003038 [View Article][PubMed]
    [Google Scholar]
  71. Ogg S. C., Lamond A. I. 2002; Cajal bodies and coilin – moving towards function. J Cell Biol 159:17–21 [View Article][PubMed]
    [Google Scholar]
  72. Pari G. S., Anders D. G. 1993; Eleven loci encoding trans-acting factors are required for transient complementation of human cytomegalovirus oriLyt-dependent DNA replication. J Virol 67:6979–6988[PubMed]
    [Google Scholar]
  73. Pari G. S., Kacica M. A., Anders D. G. 1993; Open reading frames UL44, IRS1/TRS1, and UL36-38 are required for transient complementation of human cytomegalovirus oriLyt-dependent DNA synthesis. J Virol 67:2575–2582[PubMed]
    [Google Scholar]
  74. Penfold M. E., Mocarski E. S. 1997; Formation of cytomegalovirus DNA replication compartments defined by localization of viral proteins and DNA synthesis. Virology 239:46–61 [View Article][PubMed]
    [Google Scholar]
  75. Prichard M. N., Duke G. M., Mocarski E. S. 1996; Human cytomegalovirus uracil DNA glycosylase is required for the normal temporal regulation of both DNA synthesis and viral replication. J Virol 70:3018–3025[PubMed]
    [Google Scholar]
  76. Prichard M. N., Lawlor H., Duke G. M., Mo C., Wang Z., Dixon M., Kemble G., Kern E. R. 2005; Human cytomegalovirus uracil DNA glycosylase associates with ppUL44 and accelerates the accumulation of viral DNA. Virol J 2:55 [View Article][PubMed]
    [Google Scholar]
  77. Prichard M. N., Sztul E., Daily S. L., Perry A. L., Frederick S. L., Gill R. B., Hartline C. B., Streblow D. N., Varnum S. M. et al. 2008; Human cytomegalovirus UL97 kinase activity is required for the hyperphosphorylation of retinoblastoma protein and inhibits the formation of nuclear aggresomes. J Virol 82:5054–5067 [View Article][PubMed]
    [Google Scholar]
  78. Ranneberg-Nilsen T., Dale H. A., Luna L., Slettebakk R., Sundheim O., Rollag H., Bjørås M. 2008; Characterization of human cytomegalovirus uracil DNA glycosylase (UL114) and its interaction with polymerase processivity factor (UL44). J Mol Biol 381:276–288 [View Article][PubMed]
    [Google Scholar]
  79. Rechter S., Scott G. M., Eickhoff J., Zielke K., Auerochs S., Müller R., Stamminger T., Rawlinson W. D., Marschall M. 2009; Cyclin-dependent kinases phosphorylate the cytomegalovirus RNA export protein pUL69 and modulate its nuclear localization and activity. J Biol Chem 284:8605–8613 [View Article][PubMed]
    [Google Scholar]
  80. Reichelt M., Wang L., Sommer M., Perrino J., Nour A. M., Sen N., Baiker A., Zerboni L., Arvin A. M. 2011; Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 7:e1001266 [View Article][PubMed]
    [Google Scholar]
  81. Rossetto C. C., Tarrant-Elorza M., Pari G. S. 2013; Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 + monocytes and CD34 + cells. PLoS Pathog 9:e1003366 [View Article][PubMed]
    [Google Scholar]
  82. Saffert R. T., Kalejta R. F. 2007; Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro. J Virol 81:9109–9120 [View Article][PubMed]
    [Google Scholar]
  83. Saffert R. T., Penkert R. R., Kalejta R. F. 2010; Cellular and viral control over the initial events of human cytomegalovirus experimental latency in CD34+ cells. J Virol 84:5594–5604 [View Article][PubMed]
    [Google Scholar]
  84. Salsman J., Zimmerman N., Chen T., Domagala M., Frappier L. 2008; Genome-wide screen of three herpesviruses for protein subcellular localization and alteration of PML nuclear bodies. PLoS Pathog 4:e1000100 [View Article][PubMed]
    [Google Scholar]
  85. Sarisky R. T., Hayward G. S. 1996; Evidence that the UL84 gene product of human cytomegalovirus is essential for promoting oriLyt-dependent DNA replication and formation of replication compartments in cotransfection assays. J Virol 70:7398–7413[PubMed]
    [Google Scholar]
  86. Scheffczik H., Savva C. G., Holzenburg A., Kolesnikova L., Bogner E. 2002; The terminase subunits pUL56 and pUL89 of human cytomegalovirus are DNA-metabolizing proteins with toroidal structure. Nucleic Acids Res 30:1695–1703 [View Article][PubMed]
    [Google Scholar]
  87. Schreiner S., Wimmer P., Sirma H., Everett R. D., Blanchette P., Groitl P., Dobner T. 2010; Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J Virol 84:7029–7038 [View Article][PubMed]
    [Google Scholar]
  88. Seeler J. S., Marchio A., Sitterlin D., Transy C., Dejean A. 1998; Interaction of SP100 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment. Proc Natl Acad Sci U S A 95:7316–7321 [View Article][PubMed]
    [Google Scholar]
  89. Seeler J. S., Marchio A., Losson R., Desterro J. M., Hay R. T., Chambon P., Dejean A. 2001; Common properties of nuclear body protein SP100 and TIF1alpha chromatin factor: role of SUMO modification. Mol Cell Biol 21:3314–3324 [View Article][PubMed]
    [Google Scholar]
  90. Sharma M., Kamil J. P., Coughlin M., Reim N. I., Coen D. M. 2014; Human cytomegalovirus UL50 and UL53 recruit viral protein kinase UL97, not protein kinase C, for disruption of nuclear lamina and nuclear egress in infected cells. J Virol 88:249–262 [View Article][PubMed]
    [Google Scholar]
  91. Shav-Tal Y., Blechman J., Darzacq X., Montagna C., Dye B. T., Patton J. G., Singer R. H., Zipori D. 2005; Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16:2395–2413 [View Article][PubMed]
    [Google Scholar]
  92. Sheaffer A. K., Weinheimer S. P., Tenney D. J. 1997; The human cytomegalovirus UL98 gene encodes the conserved herpesvirus alkaline nuclease. J Gen Virol 78:2953–2961[PubMed]
    [Google Scholar]
  93. Siew V. K., Duh C. Y., Wang S. K. 2009; Human cytomegalovirus UL76 induces chromosome aberrations. J Biomed Sci 16:107 [View Article][PubMed]
    [Google Scholar]
  94. Silva L., Cliffe A., Chang L., Knipe D. M. 2008; Role for A-type lamins in herpesviral DNA targeting and heterochromatin modulation. PLoS Pathog 4:e1000071 [View Article][PubMed]
    [Google Scholar]
  95. Silva L. A., Loregian A., Pari G. S., Strang B. L., Coen D. M. 2010; The carboxy-terminal segment of the human cytomegalovirus DNA polymerase accessory subunit UL44 is crucial for viral replication. J Virol 84:11563–11568 [View Article][PubMed]
    [Google Scholar]
  96. Silva L. A., Strang B. L., Lin E. W., Kamil J. P., Coen D. M. 2011; Sites and roles of phosphorylation of the human cytomegalovirus DNA polymerase subunit UL44. Virology 417:268–280 [View Article][PubMed]
    [Google Scholar]
  97. Speese S. D., Ashley J., Jokhi V., Nunnari J., Barria R., Li Y., Ataman B., Koon A., Chang Y. T. et al. 2012; Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149:832–846 [View Article][PubMed]
    [Google Scholar]
  98. Stepp W. H., Meyers J. M., McBride A. A. 2013; Sp100 provides intrinsic immunity against human papillomavirus infection. MBio 4:e00845-e13 [View Article][PubMed]
    [Google Scholar]
  99. Stern-Ginossar N., Weisburd B., Michalski A., Le V. T., Hein M. Y., Huang S. X., Ma M., Shen B., Qian S. B. et al. 2012; Decoding human cytomegalovirus. Science 338:1088–1093 [View Article][PubMed]
    [Google Scholar]
  100. Sternsdorf T., Jensen K., Reich B., Will H. 1999; The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J Biol Chem 274:12555–12566 [View Article][PubMed]
    [Google Scholar]
  101. Strang B. L., Coen D. M. 2010; Interaction of the human cytomegalovirus uracil DNA glycosylase UL114 with the viral DNA polymerase catalytic subunit UL54. J Gen Virol 91:2029–2033 [View Article][PubMed]
    [Google Scholar]
  102. Strang B. L., Sinigalia E., Silva L. A., Coen D. M., Loregian A. 2009; Analysis of the association of the human cytomegalovirus DNA polymerase subunit UL44 with the viral DNA replication factor UL84. J Virol 83:7581–7589 [View Article][PubMed]
    [Google Scholar]
  103. Strang B. L., Boulant S., Coen D. M. 2010a; Nucleolin associates with the human cytomegalovirus DNA polymerase accessory subunit UL44 and is necessary for efficient viral replication. J Virol 84:1771–1784 [View Article][PubMed]
    [Google Scholar]
  104. Strang B. L., Geballe A. P., Coen D. M. 2010b; Association of human cytomegalovirus proteins IRS1 and TRS1 with the viral DNA polymerase accessory subunit UL44. J Gen Virol 91:2167–2175 [View Article][PubMed]
    [Google Scholar]
  105. Strang B. L., Boulant S., Kirchhausen T., Coen D. M. 2012a; Host cell nucleolin is required to maintain the architecture of human cytomegalovirus replication compartments. MBio 3:301–311 [View Article][PubMed]
    [Google Scholar]
  106. Strang B. L., Boulant S., Chang L., Knipe D. M., Kirchhausen T., Coen D. M. 2012b; Human cytomegalovirus UL44 concentrates at the periphery of replication compartments, the site of viral DNA synthesis. J Virol 86:2089–2095 [View Article][PubMed]
    [Google Scholar]
  107. Strang B. L., Bender B. J., Sharma M., Pesola J. M., Sanders R. L., Spector D. H., Coen D. M. 2012c; A mutation deleting sequences encoding the amino terminus of human cytomegalovirus UL84 impairs interaction with UL44 and capsid localization. J Virol 86:11066–11077 [View Article][PubMed]
    [Google Scholar]
  108. Tanaka S., Furukawa T., Plotkin S. A. 1975; Human cytomegalovirus stimulates host cell RNA synthesis. J Virol 15:297–304[PubMed]
    [Google Scholar]
  109. Tavalai N., Stamminger T. 2009; Interplay between herpesvirus infection and host defense by PML nuclear bodies. Viruses 1:1240–1264 [View Article][PubMed]
    [Google Scholar]
  110. Tavalai N., Stamminger T. 2011; Intrinsic cellular defense mechanisms targeting human cytomegalovirus. Virus Res 157:128–133 [View Article][PubMed]
    [Google Scholar]
  111. Tavalai N., Adler M., Scherer M., Riedl Y., Stamminger T. 2011; Evidence for a dual antiviral role of the major nuclear domain 10 component Sp100 during the immediate-early and late phases of the human cytomegalovirus replication cycle. J Virol 85:9447–9458 [View Article][PubMed]
    [Google Scholar]
  112. Towler J. C., Ebrahimi B., Lane B., Davison A. J., Dargan D. J. 2012; Human cytomegalovirus transcriptome activity differs during replication in human fibroblast, epithelial and astrocyte cell lines. J Gen Virol 93:1046–1058 [View Article][PubMed]
    [Google Scholar]
  113. Tran K., Mahr J. A., Spector D. H. 2010; Proteasome subunits relocalize during human cytomegalovirus infection, and proteasome activity is necessary for efficient viral gene transcription. J Virol 84:3079–3093 [View Article][PubMed]
    [Google Scholar]
  114. Ullman A. J., Hearing P. 2008; Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325–7335 [View Article][PubMed]
    [Google Scholar]
  115. Wang J. B., Zhu Y., McVoy M. A., Parris D. S. 2012; Changes in subcellular localization reveal interactions between human cytomegalovirus terminase subunits. Virol J 9:315 [View Article][PubMed]
    [Google Scholar]
  116. Wilkinson G. W., Kelly C., Sinclair J. H., Rickards C. 1998; Disruption of PML-associated nuclear bodies mediated by the human cytomegalovirus major immediate early gene product. J Gen Virol 79:1233–1245[PubMed]
    [Google Scholar]
  117. Wood L. J., Baxter M. K., Plafker S. M., Gibson W. 1997; Human cytomegalovirus capsid assembly protein precursor (pUL80.5) interacts with itself and with the major capsid protein (pUL86) through two different domains. J Virol 71:179–190[PubMed]
    [Google Scholar]
  118. Xu Y., Ahn J. H., Cheng M., apRhys C. M., Chiou C. J., Zong J., Matunis M. J., Hayward G. S. 2001; Proteasome-independent disruption of PML oncogenic domains (PODs), but not covalent modification by SUMO-1, is required for human cytomegalovirus immediate-early protein IE1 to inhibit PML-mediated transcriptional repression. J Virol 75:10683–10695 [View Article][PubMed]
    [Google Scholar]
  119. Xue Y., Gibbons R., Yan Z., Yang D., McDowell T. L., Sechi S., Qin J., Zhou S., Higgs D., Wang W. 2003; The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci U S A 100:10635–10640 [View Article][PubMed]
    [Google Scholar]
  120. Yang K., Baines J. D. 2011; Selection of HSV capsids for envelopment involves interaction between capsid surface components pUL31, pUL17, and pUL25. Proc Natl Acad Sci U S A 108:14276–14281 [View Article][PubMed]
    [Google Scholar]
  121. Yu D., Silva M. C., Shenk T. 2003; Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc Natl Acad Sci U S A 100:12396–12401 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.071084-0
Loading
/content/journal/jgv/10.1099/vir.0.071084-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error