1887

Abstract

Core plays a critical role during hepatitis C virus (HCV) assembly, not only as a structural component of the virion, but also as a regulator of the formation of assembly sites. In this study, we observed that core is expressed later than other HCV proteins in a single viral cycle assay, resulting in a relative increase of core expression during a late step of the viral life cycle. This delayed core expression results from an increase of core half-life, indicating that core is initially degraded and is stabilized at a late step of the HCV life cycle. Stabilization-mediated delayed kinetics of core expression were also observed using heterologous expression systems. Core stabilization did not depend on its interaction with non-structural proteins or lipid droplets but was correlated with its expression levels and its oligomerization status. Therefore in the course of a HCV infection, core stabilization is likely to occur when the prior amplification of the viral genome during an initial replication step allows core to be synthesized at higher levels as a stable protein, during the assembly step of the viral life cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.070433-0
2015-02-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/2/311.html?itemId=/content/journal/jgv/10.1099/vir.0.070433-0&mimeType=html&fmt=ahah

References

  1. Alsaleh K., Delavalle P.-Y., Pillez A., Duverlie G., Descamps V., Rouillé Y., Dubuisson J., Wychowski C.. ( 2010;). Identification of basic amino acids at the N-terminal end of the core protein that are crucial for hepatitis C virus infectivity. . J Virol 84:, 12515–12528. [CrossRef][PubMed]
    [Google Scholar]
  2. Bartenschlager R., Penin F., Lohmann V., André P.. ( 2011;). Assembly of infectious hepatitis C virus particles. . Trends Microbiol 19:, 95–103. [CrossRef][PubMed]
    [Google Scholar]
  3. Boulant S., Vanbelle C., Ebel C., Penin F., Lavergne J.-P.. ( 2005;). Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features. . J Virol 79:, 11353–11365. [CrossRef][PubMed]
    [Google Scholar]
  4. Boulant S., Targett-Adams P., McLauchlan J.. ( 2007;). Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. . J Gen Virol 88:, 2204–2213. [CrossRef][PubMed]
    [Google Scholar]
  5. Clayton R. F., Owsianka A., Aitken J., Graham S., Bhella D., Patel A. H.. ( 2002;). Analysis of antigenicity and topology of E2 glycoprotein present on recombinant hepatitis C virus-like particles. . J Virol 76:, 7672–7682. [CrossRef][PubMed]
    [Google Scholar]
  6. Dentzer T. G., Lorenz I. C., Evans M. J., Rice C. M.. ( 2009;). Determinants of the hepatitis C virus nonstructural protein 2 protease domain required for production of infectious virus. . J Virol 83:, 12702–12713. [CrossRef][PubMed]
    [Google Scholar]
  7. Descamps V., Op de Beeck A., Plassart C., Brochot E., François C., Helle F., Adler M., Bourgeois N., Degré D. et al. ( 2012;). Strong correlation between liver and serum levels of hepatitis C virus core antigen and RNA in chronically infected patients. . J Clin Microbiol 50:, 465–468. [CrossRef][PubMed]
    [Google Scholar]
  8. Dubuisson J., Hsu H. H., Cheung R. C., Greenberg H. B., Russell D. G., Rice C. M.. ( 1994;). Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses. . J Virol 68:, 6147–6160.[PubMed]
    [Google Scholar]
  9. Eng F. J., Walewski J. L., Klepper A. L., Fishman S. L., Desai S. M., McMullan L. K., Evans M. J., Rice C. M., Branch A. D.. ( 2009;). Internal initiation stimulates production of p8 minicore, a member of a newly discovered family of hepatitis C virus core protein isoforms. . J Virol 83:, 3104–3114. [CrossRef][PubMed]
    [Google Scholar]
  10. Flint M., Maidens C., Loomis-Price L. D., Shotton C., Dubuisson J., Monk P., Higginbottom A., Levy S., McKeating J. A.. ( 1999;). Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. . J Virol 73:, 6235–6244.[PubMed]
    [Google Scholar]
  11. Goueslain L., Alsaleh K., Horellou P., Roingeard P., Descamps V., Duverlie G., Ciczora Y., Wychowski C., Dubuisson J., Rouillé Y.. ( 2010;). Identification of GBF1 as a cellular factor required for hepatitis C virus RNA replication. . J Virol 84:, 773–787. [CrossRef][PubMed]
    [Google Scholar]
  12. Hope R. G., McLauchlan J.. ( 2000;). Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. . J Gen Virol 81:, 1913–1925.[PubMed]
    [Google Scholar]
  13. Jirasko V., Montserret R., Lee J. Y., Gouttenoire J., Moradpour D., Penin F., Bartenschlager R.. ( 2010;). Structural and functional studies of nonstructural protein 2 of the hepatitis C virus reveal its key role as organizer of virion assembly. . PLoS Pathog 6:, e1001233. [CrossRef][PubMed]
    [Google Scholar]
  14. Kato T., Date T., Miyamoto M., Furusaka A., Tokushige K., Mizokami M., Wakita T.. ( 2003;). Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. . Gastroenterology 125:, 1808–1817. [CrossRef][PubMed]
    [Google Scholar]
  15. Klein K. C., Polyak S. J., Lingappa J. R.. ( 2004;). Unique features of hepatitis C virus capsid formation revealed by de novo cell-free assembly. . J Virol 78:, 9257–9269. [CrossRef][PubMed]
    [Google Scholar]
  16. Kunkel M., Lorinczi M., Rijnbrand R., Lemon S. M., Watowich S. J.. ( 2001;). Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein. . J Virol 75:, 2119–2129. [CrossRef][PubMed]
    [Google Scholar]
  17. Lavanchy D.. ( 2011;). Evolving epidemiology of hepatitis C virus. . Clin Microbiol Infect 17:, 107–115. [CrossRef][PubMed]
    [Google Scholar]
  18. Lindenbach B. D., Evans M. J., Syder A. J., Wölk B., Tellinghuisen T. L., Liu C. C., Maruyama T., Hynes R. O., Burton D. R. et al. ( 2005;). Complete replication of hepatitis C virus in cell culture. . Science 309:, 623–626. [CrossRef][PubMed]
    [Google Scholar]
  19. Lindenbach B. D., Thiel H.-J., Rice C. M.. ( 2007;). Flaviviridae: the viruses and their replication. . In Fields Virology, , 5th edn., pp. 1101–1152. Edited by Knipe D. M., Howley P. M... Philadelphia, PA:: Lippincott, Williams & Wilkins;.
    [Google Scholar]
  20. Lohmann V., Körner F., Koch J., Herian U., Theilmann L., Bartenschlager R.. ( 1999;). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. . Science 285:, 110–113. [CrossRef][PubMed]
    [Google Scholar]
  21. Macdonald A., Crowder K., Street A., McCormick C., Saksela K., Harris M.. ( 2003;). The hepatitis C virus non-structural NS5A protein inhibits activating protein-1 function by perturbing ras-ERK pathway signaling. . J Biol Chem 278:, 17775–17784. [CrossRef][PubMed]
    [Google Scholar]
  22. Maillard P., Krawczynski K., Nitkiewicz J., Bronnert C., Sidorkiewicz M., Gounon P., Dubuisson J., Faure G., Crainic R., Budkowska A.. ( 2001;). Nonenveloped nucleocapsids of hepatitis C virus in the serum of infected patients. . J Virol 75:, 8240–8250. [CrossRef][PubMed]
    [Google Scholar]
  23. Majeau N., Gagné V., Boivin A., Bolduc M., Majeau J.-A., Ouellet D., Leclerc D.. ( 2004;). The N-terminal half of the core protein of hepatitis C virus is sufficient for nucleocapsid formation. . J Gen Virol 85:, 971–981. [CrossRef][PubMed]
    [Google Scholar]
  24. Masaki T., Suzuki R., Murakami K., Aizaki H., Ishii K., Murayama A., Date T., Matsuura Y., Miyamura T. et al. ( 2008;). Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. . J Virol 82:, 7964–7976. [CrossRef][PubMed]
    [Google Scholar]
  25. Maurin G., Fresquet J., Granio O., Wychowski C., Cosset F.-L., Lavillette D.. ( 2011;). Identification of interactions in the E1E2 heterodimer of hepatitis C virus important for cell entry. . J Biol Chem 286:, 23865–23876. [CrossRef][PubMed]
    [Google Scholar]
  26. McLauchlan J., Lemberg M. K., Hope G., Martoglio B.. ( 2002;). Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. . EMBO J 21:, 3980–3988. [CrossRef][PubMed]
    [Google Scholar]
  27. McMullan L. K., Grakoui A., Evans M. J., Mihalik K., Puig M., Branch A. D., Feinstone S. M., Rice C. M.. ( 2007;). Evidence for a functional RNA element in the hepatitis C virus core gene. . Proc Natl Acad Sci U S A 104:, 2879–2884. [CrossRef][PubMed]
    [Google Scholar]
  28. Miyanari Y., Atsuzawa K., Usuda N., Watashi K., Hishiki T., Zayas M., Bartenschlager R., Wakita T., Hijikata M., Shimotohno K.. ( 2007;). The lipid droplet is an important organelle for hepatitis C virus production. . Nat Cell Biol 9:, 1089–1097. [CrossRef][PubMed]
    [Google Scholar]
  29. Murray C. L., Jones C. T., Tassello J., Rice C. M.. ( 2007;). Alanine scanning of the hepatitis C virus core protein reveals numerous residues essential for production of infectious virus. . J Virol 81:, 10220–10231. [CrossRef][PubMed]
    [Google Scholar]
  30. Nakabayashi H., Taketa K., Miyano K., Yamane T., Sato J.. ( 1982;). Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. . Cancer Res 42:, 3858–3863.[PubMed]
    [Google Scholar]
  31. Popescu C.-I., Callens N., Trinel D., Roingeard P., Moradpour D., Descamps V., Duverlie G., Penin F., Héliot L. et al. ( 2011;). NS2 protein of hepatitis C virus interacts with structural and non-structural proteins towards virus assembly. . PLoS Pathog 7:, e1001278. [CrossRef][PubMed]
    [Google Scholar]
  32. Rocha-Perugini V., Lavie M., Delgrange D., Canton J., Pillez A., Potel J., Lecoeur C., Rubinstein E., Dubuisson J. et al. ( 2009;). The association of CD81 with tetraspanin-enriched microdomains is not essential for Hepatitis C virus entry. . BMC Microbiol 9:, 111. [CrossRef][PubMed]
    [Google Scholar]
  33. Rouillé Y., Helle F., Delgrange D., Roingeard P., Voisset C., Blanchard E., Belouzard S., McKeating J., Patel A. H. et al. ( 2006;). Subcellular localization of hepatitis C virus structural proteins in a cell culture system that efficiently replicates the virus. . J Virol 80:, 2832–2841. [CrossRef][PubMed]
    [Google Scholar]
  34. Séron K., Couturier C., Belouzard S., Bacart J., Monté D., Corset L., Bocquet O., Dam J., Vauthier V. et al. ( 2011;). Endospanins regulate a postinternalization step of the leptin receptor endocytic pathway. . J Biol Chem 286:, 17968–17981. [CrossRef][PubMed]
    [Google Scholar]
  35. Shi S. T., Lee K.-J., Aizaki H., Hwang S. B., Lai M. M. C.. ( 2003;). Hepatitis C virus RNA replication occurs on a detergent-resistant membrane that cofractionates with caveolin-2. . J Virol 77:, 4160–4168. [CrossRef][PubMed]
    [Google Scholar]
  36. Shimoike T., Koyama C., Murakami K., Suzuki R., Matsuura Y., Miyamura T., Suzuki T.. ( 2006;). Down-regulation of the internal ribosome entry site (IRES)-mediated translation of the hepatitis C virus: critical role of binding of the stem-loop IIId domain of IRES and the viral core protein. . Virology 345:, 434–445. [CrossRef][PubMed]
    [Google Scholar]
  37. Shirakura M., Murakami K., Ichimura T., Suzuki R., Shimoji T., Fukuda K., Abe K., Sato S., Fukasawa M. et al. ( 2007;). E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. . J Virol 81:, 1174–1185. [CrossRef][PubMed]
    [Google Scholar]
  38. Stapleford K. A., Lindenbach B. D.. ( 2011;). Hepatitis C virus NS2 coordinates virus particle assembly through physical interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes. . J Virol 85:, 1706–1717. [CrossRef][PubMed]
    [Google Scholar]
  39. Suzuki R., Tamura K., Li J., Ishii K., Matsuura Y., Miyamura T., Suzuki T.. ( 2001;). Ubiquitin-mediated degradation of hepatitis C virus core protein is regulated by processing at its carboxyl terminus. . Virology 280:, 301–309. [CrossRef][PubMed]
    [Google Scholar]
  40. Vassilaki N., Friebe P., Meuleman P., Kallis S., Kaul A., Paranhos-Baccalà G., Leroux-Roels G., Mavromara P., Bartenschlager R.. ( 2008;). Role of the hepatitis C virus core+1 open reading frame and core cis-acting RNA elements in viral RNA translation and replication. . J Virol 82:, 11503–11515. [CrossRef][PubMed]
    [Google Scholar]
  41. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Kräusslich H.-G. et al. ( 2005;). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. . Nat Med 11:, 791–796. [CrossRef][PubMed]
    [Google Scholar]
  42. Walewski J. L., Keller T. R., Stump D. D., Branch A. D.. ( 2001;). Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. . RNA 7:, 710–721. [CrossRef][PubMed]
    [Google Scholar]
  43. Xu Z., Choi J., Yen T. S., Lu W., Strohecker A., Govindarajan S., Chien D., Selby M. J., Ou J.. ( 2001;). Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. . EMBO J 20:, 3840–3848. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.070433-0
Loading
/content/journal/jgv/10.1099/vir.0.070433-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error