1887

Abstract

Coxsackievirus B4 (CV-B4) belongs to the genus within the family . To investigate target proteins recognized by T-cells in human enterovirus B infections, virus-encoded structural [VP0 (VP4 and VP2), VP1, VP3] and non-structural (2A, 2B, 2C, 3C and 3D) proteins were expressed and purified in . Peripheral blood of 19 healthy adult donors was used to create enterovirus-specific T-cell lines by repeated stimulation with CV-B4 cell lysate antigen. T-cell lines responded in individual patterns, and responses to all purified proteins were observed. The most often recognized enteroviral protein was VP0, which is the fusion between the most conserved structural proteins, VP4 and VP2. T-cell responses to VP0 were detected in 15 of the 19 (79 %) donor lines. Non-structural 2C protein was recognized in 11 of the 19 (58 %) lines, and 11 of the 19 (58 %) lines also had a response to 3D protein. Furthermore, responses to other non-structural proteins (2A, 2B and 3C) were also detected. T-cell responses did not correlate clearly to the individual HLA-DR-DQ phenotype or the history of past coxsackie B virus infections of the donors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.069062-0
2015-02-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/2/322.html?itemId=/content/journal/jgv/10.1099/vir.0.069062-0&mimeType=html&fmt=ahah

References

  1. Adams M. J., King A. M., Carstens E. B.. ( 2013;). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2013). . Arch Virol 158:, 2023–2030. [CrossRef][PubMed]
    [Google Scholar]
  2. Colli M. L., Nogueira T. C., Allagnat F., Cunha D. A., Gurzov E. N., Cardozo A. K., Roivainen M., Op de Beeck A., Eizirik D. L.. ( 2011;). Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance. . PLoS Pathog 7:, e1002267. [CrossRef][PubMed]
    [Google Scholar]
  3. Craig M. E., Nair S., Stein H., Rawlinson W. D.. ( 2013;). Viruses and type 1 diabetes: a new look at an old story. . Pediatr Diabetes 14:, 149–158.[PubMed]
    [Google Scholar]
  4. Dang S., Gao N., Li Y., Li M., Wang X., Jia X., Zhai S., Zhang X., Liu J. et al. ( 2014;). Dominant CD4-dependent RNA-dependent RNA polymerase-specific T-cell responses in children acutely infected with human enterovirus 71 and healthy adult controls. . Immunology 142:, 89–100. [CrossRef][PubMed]
    [Google Scholar]
  5. Davies M. V., Pelletier J., Meerovitch K., Sonenberg N., Kaufman R. J.. ( 1991;). The effect of poliovirus proteinase 2Apro expression on cellular metabolism. Inhibition of DNA replication, RNA polymerase II transcription, and translation. . J Biol Chem 266:, 14714–14720.[PubMed]
    [Google Scholar]
  6. Eizirik D. L., Colli M. L., Ortis F.. ( 2009;). The role of inflammation in insulitis and β-cell loss in type 1 diabetes. . Nat Rev Endocrinol 5:, 219–226. [CrossRef][PubMed]
    [Google Scholar]
  7. Ellis R. J., Varela-Calvino R., Tree T. I., Peakman M.. ( 2005;). HLA Class II molecules on haplotypes associated with type 1 diabetes exhibit similar patterns of binding affinities for coxsackievirus P2C peptides. . Immunology 116:, 337–346. [CrossRef][PubMed]
    [Google Scholar]
  8. Ferrari C., Valli A., Galati L., Penna A., Scaccaglia P., Giuberti T., Schianchi C., Missale G., Marin M. G., Fiaccadori F.. ( 1994;). T-cell response to structural and nonstructural hepatitis C virus antigens in persistent and self-limited hepatitis C virus infections. . Hepatology 19:, 286–295. [CrossRef][PubMed]
    [Google Scholar]
  9. Grist N. R., Bell E. J., Assaad F.. ( 1978;). Enteroviruses in human disease. . Prog Med Virol 24:, 114–157.[PubMed]
    [Google Scholar]
  10. Hämäläinen S., Nurminen N., Ahlfors H., Oikarinen S., Sioofy-Khojine A. B., Frisk G., Oberste M. S., Lahesmaa R., Pesu M., Hyöty H.. ( 2014;). Coxsackievirus B1 reveals strain specific differences in plasmacytoid dendritic cell mediated immunogenicity. . J Med Virol 86:, 1412–1420. [CrossRef][PubMed]
    [Google Scholar]
  11. Härkönen T., Hovi T., Roivainen M.. ( 1997;). Expression of coxsackievirus B4 proteins VP0 and 2C in Escherichia coli and generation of virus protein recognizing antisera. . J Virol Methods 69:, 147–158. [CrossRef][PubMed]
    [Google Scholar]
  12. Hermann R., Knip M., Veijola R., Simell O., Laine A. P., Åkerblom H. K., Groop P. H., Forsblom C., Pettersson-Fernholm K. et al. ( 2003;). Temporal changes in the frequencies of HLA genotypes in patients with Type 1 diabetes – indication of an increased environmental pressure?. Diabetologia 46:, 420–425.[PubMed]
    [Google Scholar]
  13. Jameson J., Cruz J., Ennis F. A.. ( 1998;). Human cytotoxic T-lymphocyte repertoire to influenza A viruses. . J Virol 72:, 8682–8689.[PubMed]
    [Google Scholar]
  14. Jenkins O., Booth J. D., Minor P. D., Almond J. W.. ( 1987;). The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the Picornaviridae. . J Gen Virol 68:, 1835–1848. [CrossRef][PubMed]
    [Google Scholar]
  15. Jun H. S., Kang Y., Notkins A. L., Yoon J. W.. ( 1997;). Gain or loss of diabetogenicity resulting from a single point mutation in recombinant encephalomyocarditis virus. . J Virol 71:, 9782–9785.[PubMed]
    [Google Scholar]
  16. Kemball C. C., Harkins S., Whitton J. L.. ( 2008;). Enumeration and functional evaluation of virus-specific CD4+ and CD8+ T cells in lymphoid and peripheral sites of coxsackievirus B3 infection. . J Virol 82:, 4331–4342. [CrossRef][PubMed]
    [Google Scholar]
  17. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. . Nature 227:, 680–685. [CrossRef][PubMed]
    [Google Scholar]
  18. Marttila J., Juhela S., Vaarala O., Hyöty H., Roivainen M., Hinkkanen A., Vilja P., Simell O., Ilonen J.. ( 2001;). Responses of coxsackievirus B4-specific T-cell lines to 2C protein-characterization of epitopes with special reference to the GAD65 homology region. . Virology 284:, 131–141. [CrossRef][PubMed]
    [Google Scholar]
  19. Marttila J., Hyöty H., Vilja P., Härkönen T., Alho A., Roivainen M., Hyypiä T., Ilonen J.. ( 2002;). T cell epitopes in coxsackievirus B4 structural proteins concentrate in regions conserved between enteroviruses. . Virology 293:, 217–224. [CrossRef][PubMed]
    [Google Scholar]
  20. Oberste M. S., Nix W. A., Maher K., Pallansch M. A.. ( 2003;). Improved molecular identification of enteroviruses by RT-PCR and amplicon sequencing. . J Clin Virol 26:, 375–377. [CrossRef][PubMed]
    [Google Scholar]
  21. Roep B. O., Atkinson M. A., van Endert P. M., Gottlieb P. A., Wilson S. B., Sachs J. A.. ( 1999;). Autoreactive T cell responses in insulin-dependent (type 1) diabetes mellitus. Report of the first international workshop for standardization of T cell assays. . J Autoimmun 13:, 267–282. [CrossRef][PubMed]
    [Google Scholar]
  22. Rotbart H. A.. ( 1995;). Enteroviral infections of the central nervous system. . Clin Infect Dis 20:, 971–981. [CrossRef][PubMed]
    [Google Scholar]
  23. Tan S., Tan X., Sun X., Lu G., Chen C. C., Yan J., Liu J., Xu W., Gao G. F.. ( 2013;). VP2 dominated CD4+ T cell responses against enterovirus 71 and cross-reactivity against coxsackievirus A16 and polioviruses in a healthy population. . J Immunol 191:, 1637–1647. [CrossRef][PubMed]
    [Google Scholar]
  24. Tauriainen S., Oikarinen S., Oikarinen M., Hyöty H.. ( 2011;). Enteroviruses in the pathogenesis of type 1 diabetes. . Semin Immunopathol 33:, 45–55. [CrossRef][PubMed]
    [Google Scholar]
  25. Tuthill T. J., Groppelli E., Hogle J. M., Rowlands D. J.. ( 2010;). Picornaviruses. . Curr Top Microbiol Immunol 343:, 43–89.[PubMed]
    [Google Scholar]
  26. Varela-Calvino R., Sgarbi G., Arif S., Peakman M.. ( 2000;). T-cell reactivity to the P2C nonstructural protein of a diabetogenic strain of coxsackievirus B4. . Virology 274:, 56–64. [CrossRef][PubMed]
    [Google Scholar]
  27. Varela-Calvino R., Skowera A., Arif S., Peakman M.. ( 2004;). Identification of a naturally processed cytotoxic CD8 T-cell epitope of coxsackievirus B4, presented by HLA-A2.1 and located in the PEVKEK region of the P2C nonstructural protein. . J Virol 78:, 13399–13408. [CrossRef][PubMed]
    [Google Scholar]
  28. Vreugdenhil G. R., Geluk A., Ottenhoff T. H., Melchers W. J., Roep B. O., Galama J. M.. ( 1998;). Molecular mimicry in diabetes mellitus: the homologous domain in coxsackie B virus protein 2C and islet autoantigen GAD65 is highly conserved in the coxsackie B-like enteroviruses and binds to the diabetes associated HLA-DR3 molecule. . Diabetologia 41:, 40–46. [CrossRef][PubMed]
    [Google Scholar]
  29. Weinzierl A. O., Rudolf D., Maurer D., Wernet D., Rammensee H. G., Stevanović S., Klingel K.. ( 2008;). Identification of HLA-A*01- and HLA-A*02-restricted CD8+ T-cell epitopes shared among group B enteroviruses. . J Gen Virol 89:, 2090–2097. [CrossRef][PubMed]
    [Google Scholar]
  30. Whitton J. L., Cornell C. T., Feuer R.. ( 2005;). Host and virus determinants of picornavirus pathogenesis and tropism. . Nat Rev Microbiol 3:, 765–776. [CrossRef][PubMed]
    [Google Scholar]
  31. Ylipaasto P., Klingel K., Lindberg A. M., Otonkoski T., Kandolf R., Hovi T., Roivainen M.. ( 2004;). Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. . Diabetologia 47:, 225–239. [CrossRef][PubMed]
    [Google Scholar]
  32. Yoon J.-W., Austin M., Onodera T., Notkins A. L.. ( 1979;). Virus-induced diabetes mellitus – isolation of a virus from the pancreas of a child with diabetic ketoacidosis. . N Engl J Med 300:, 1173–1179. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.069062-0
Loading
/content/journal/jgv/10.1099/vir.0.069062-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error