1887

Abstract

Human herpesvirus-6A (HHV-6A) is rarer than HHV-6B in many infant populations. However, they are similarly prevalent as germline, chromosomally integrated genomes (ciHHV-6A/B). This integrated form affects 0.1–1 % of the human population, where potentially virus gene expression could be in every cell, although virus relationships and health effects are not clear. In a Czech/German patient cohort ciHHV-6A was more common and diverse than ciHHV-6B. Quantitative PCR, nucleotide sequencing and telomeric integration site amplification characterized ciHHV-6 in 44 German myocarditis/cardiomyopathy and Czech malignancy/inflammatory disease (MI) patients plus donors. Comparisons were made to sequences from global virus reference strains, and blood DNA from childhood-infections from Zambia (HHV-6A mainly) and Japan (HHV-6B). The MI cohort were 86 % (18/21) ciHHV-6A, the cardiac cohort 65 % (13/20) ciHHV-6B, suggesting different disease links. Reactivation was supported by findings of 1) recombination between ciHHV-6A and HHV-6B genes in 20 % (4/21) of the MI cohort; 2) expression in a patient subset, of early/late transcripts from the inflammatory mediator genes chemokine receptor U51 and chemokine U83, both identical to ciHHV-6A DNA sequences; and 3) superinfection shown by deep sequencing identifying minor virus-variants only in ciHHV-6A, which expressed transcripts, indicating virus infection reactivates latent ciHHV-6A. Half the MI cohort had more than two copies per cell, median 5.2, indicative of reactivation. Remarkably, the integrated genomes encoded the secreted-active form of virus chemokines, rare in virus from childhood-infections. This shows integrated virus genomes can contribute new human genes with links to inflammatory pathology and supports ciHHV-6A reactivation as a source for emergent infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.068536-0
2015-02-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/2/370.html?itemId=/content/journal/jgv/10.1099/vir.0.068536-0&mimeType=html&fmt=ahah

References

  1. Akhyani N., Berti R., Brennan M. B., Soldan S. S., Eaton J. M., McFarland H. F., Jacobson S.. ( 2000;). Tissue distribution and variant characterization of human herpesvirus (HHV)-6: increased prevalence of HHV-6A in patients with multiple sclerosis. . J Infect Dis 182:, 1321–1325. [CrossRef][PubMed]
    [Google Scholar]
  2. Álvarez-Lafuente R., Martín-Estefanía C., de Las Heras V., Castrillo C., Picazo J. J., Varela de Seijas E., González R. A.. ( 2002;). Active human herpesvirus 6 infection in patients with multiple sclerosis. . Arch Neurol 59:, 929–933. [CrossRef][PubMed]
    [Google Scholar]
  3. Arbuckle J. H., Medveczky P. G.. ( 2011;). The molecular biology of human herpesvirus-6 latency and telomere integration. . Microbes Infect 13:, 731–741. [CrossRef][PubMed]
    [Google Scholar]
  4. Arbuckle J. H., Medveczky M. M., Luka J., Hadley S. H., Luegmayr A., Ablashi D., Lund T. C., Tolar J., De Meirleir K.. & other authors ( 2010;). The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. . Proc Natl Acad Sci U S A 107:, 5563–5568. [CrossRef][PubMed]
    [Google Scholar]
  5. Bates M., Monze M., Bima H., Kapambwe M., Clark D., Kasolo F. C., Gompels U. A.. ( 2009;). Predominant human herpesvirus 6 variant A infant infections in an HIV-1 endemic region of Sub-Saharan Africa. . J Med Virol 81:, 779–789. [CrossRef][PubMed]
    [Google Scholar]
  6. Ben-Fredj N., Ben-Selma W., Rotola A., Nefzi F., Benedetti S., Frih-Ayed M., Di Luca D., Aouni M., Caselli E.. ( 2013;). Prevalence of human herpesvirus U94/REP antibodies and DNA in Tunisian multiple sclerosis patients. . J Neurovirol 19:, 42–47. [CrossRef][PubMed]
    [Google Scholar]
  7. Bigalke B., Klingel K., May A. E., Kandolf R., Gawaz M. G.. ( 2007;). Human herpesvirus 6 subtype A-associated myocarditis with ‘apical ballooning’. . Can J Cardiol 23:, 393–395. [CrossRef][PubMed]
    [Google Scholar]
  8. Bolger A. M., Lohse M., Usadel B.. ( 2014;). Trimmomatic: a flexible trimmer for Illumina sequence data. . Bioinformatics 30:, 2114–2120. [CrossRef][PubMed]
    [Google Scholar]
  9. Boutolleau D., Duros C., Bonnafous P., Caïola D., Karras A., Castro N. D., Ouachée M., Narcy P., Gueudin M.. & other authors ( 2006;). Identification of human herpesvirus 6 variants A and B by primer-specific real-time PCR may help to revisit their respective role in pathology. . J Clin Virol 35:, 257–263. [CrossRef][PubMed]
    [Google Scholar]
  10. Britt-Compton B., Rowson J., Locke M., Mackenzie I., Kipling D., Baird D. M.. ( 2006;). Structural stability and chromosome-specific telomere length is governed by cis-acting determinants in humans. . Hum Mol Genet 15:, 725–733. [CrossRef][PubMed]
    [Google Scholar]
  11. Caselli E., Boni M., Bracci A., Rotola A., Cermelli C., Castellazzi M., Di Luca D., Cassai E.. ( 2002;). Detection of antibodies directed against human herpesvirus 6 U94/REP in sera of patients affected by multiple sclerosis. . J Clin Microbiol 40:, 4131–4137. [CrossRef][PubMed]
    [Google Scholar]
  12. Caselli E., Bracci A., Galvan M., Boni M., Rotola A., Bergamini C., Cermelli C., Dal Monte P., Gompels U. A.. & other authors ( 2006;). Human herpesvirus 6 (HHV-6) U94/REP protein inhibits betaherpesvirus replication. . Virology 346:, 402–414. [CrossRef][PubMed]
    [Google Scholar]
  13. Caselli E., Zatelli M. C., Rizzo R., Benedetti S., Martorelli D., Trasforini G., Cassai E., degli Uberti E. C., Di Luca D., Dolcetti R.. ( 2012;). Virologic and immunologic evidence supporting an association between HHV-6 and Hashimoto’s thyroiditis. . PLoS Pathog 8:, e1002951. [CrossRef][PubMed]
    [Google Scholar]
  14. Caslini C.. ( 2010;). Transcriptional regulation of telomeric non-coding RNA: implications on telomere biology, replicative senescence and cancer. . RNA Biol 7:, 18–22. [CrossRef][PubMed]
    [Google Scholar]
  15. Catusse J., Parry C. M., Dewin D. R., Gompels U. A.. ( 2007;). Inhibition of HIV-1 infection by viral chemokine U83A via high-affinity CCR5 interactions that block human chemokine-induced leukocyte chemotaxis and receptor internalization. . Blood 109:, 3633–3639. [CrossRef][PubMed]
    [Google Scholar]
  16. Catusse J., Spinks J., Mattick C., Dyer A., Laing K., Fitzsimons C., Smit M. J., Gompels U. A.. ( 2008;). Immunomodulation by herpesvirus U51A chemokine receptor via CCL5 and FOG-2 down-regulation plus XCR1 and CCR7 mimicry in human leukocytes. . Eur J Immunol 38:, 763–777. [CrossRef][PubMed]
    [Google Scholar]
  17. Catusse J., Clark D. J., Gompels U. A.. ( 2009;). CCR5 signalling, but not DARC or D6 regulatory, chemokine receptors are targeted by herpesvirus U83A chemokine which delays receptor internalisation via diversion to a caveolin-linked pathway. . J Inflamm (Lond) 6:, 22. [CrossRef][PubMed]
    [Google Scholar]
  18. Cermelli C., Berti R., Soldan S. S., Mayne M., D’ambrosia J. M., Ludwin S. K., Jacobson S.. ( 2003;). High frequency of human herpesvirus 6 DNA in multiple sclerosis plaques isolated by laser microdissection. . J Infect Dis 187:, 1377–1387. [CrossRef][PubMed]
    [Google Scholar]
  19. Chi J., Gu B., Zhang C., Peng G., Zhou F., Chen Y., Zhang G., Guo Y., Guo D.. & other authors ( 2012;). Human herpesvirus 6 latent infection in patients with glioma. . J Infect Dis 206:, 1394–1398. [CrossRef][PubMed]
    [Google Scholar]
  20. Clark D. J., Catusse J., Stacey A., Borrow P., Gompels U. A.. ( 2013;). Activation of CCR2+ human proinflammatory monocytes by human herpesvirus-6B chemokine N-terminal peptide. . J Gen Virol 94:, 1624–1635. [CrossRef][PubMed]
    [Google Scholar]
  21. Crawford J. R., Santi M. R., Thorarinsdottir H. K., Cornelison R., Rushing E. J., Zhang H., Yao K., Jacobson S., Macdonald T. J.. ( 2009;). Detection of human herpesvirus-6 variants in pediatric brain tumors: association of viral antigen in low grade gliomas. . J Clin Virol 46:, 37–42. [CrossRef][PubMed]
    [Google Scholar]
  22. Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., Handsaker R. E., Lunter G., Marth G. T.. & other authors ( 2011;). The variant call format and VCFtools. . Bioinformatics 27:, 2156–2158. [CrossRef][PubMed]
    [Google Scholar]
  23. Depledge D. P., Palser A. L., Watson S. J., Lai I. Y., Gray E. R., Grant P., Kanda R. K., Leproust E., Kellam P., Breuer J.. ( 2011;). Specific capture and whole-genome sequencing of viruses from clinical samples. . PLoS ONE 6:, e27805. [CrossRef][PubMed]
    [Google Scholar]
  24. DePristo M. A., Banks E., Poplin R., Garimella K. V., Maguire J. R., Hartl C., Philippakis A. A., del Angel G., Rivas M. A.. & other authors ( 2011;). A framework for variation discovery and genotyping using next-generation DNA sequencing data. . Nat Genet 43:, 491–498. [CrossRef][PubMed]
    [Google Scholar]
  25. Dewin D. R., Catusse J., Gompels U. A.. ( 2006;). Identification and characterization of U83A viral chemokine, a broad and potent beta-chemokine agonist for human CCRs with unique selectivity and inhibition by spliced isoform. . J Immunol 176:, 544–556. [CrossRef][PubMed]
    [Google Scholar]
  26. Dominguez G., Dambaugh T. R., Stamey F. R., Dewhurst S., Inoue N., Pellett P. E.. ( 1999;). Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. . J Virol 73:, 8040–8052.[PubMed]
    [Google Scholar]
  27. Downing R. G., Sewankambo N., Serwadda D., Honess R., Crawford D., Jarrett R., Griffin B. E.. ( 1987;). Isolation of human lymphotropic herpesviruses from Uganda. . Lancet 330:, 390. [CrossRef][PubMed]
    [Google Scholar]
  28. Endo A., Watanabe K., Ohye T., Suzuki K., Matsubara T., Shimizu N., Kurahashi H., Yoshikawa T., Katano H.. & other authors ( 2014;). Molecular and virological evidence of viral activation from chromosomally integrated human herpesvirus 6A in a patient with X-linked severe combined immunodeficiency. . Clin Infect Dis 59:, 545–548. [CrossRef][PubMed]
    [Google Scholar]
  29. Epstein L. G., Shinnar S., Hesdorffer D. C., Nordli D. R., Hamidullah A., Benn E. K., Pellock J. M., Frank L. M., Lewis D. V.. & other authors ( 2012;). Human herpesvirus 6 and 7 in febrile status epilepticus: the FEBSTAT study. . Epilepsia 53:, 1481–1488. [CrossRef][PubMed]
    [Google Scholar]
  30. Fitzsimons C. P., Gompels U. A., Verzijl D., Vischer H. F., Mattick C., Leurs R., Smit M. J.. ( 2006;). Chemokine-directed trafficking of receptor stimulus to different g proteins: selective inducible and constitutive signaling by human herpesvirus 6-encoded chemokine receptor U51. . Mol Pharmacol 69:, 888–898.[PubMed]
    [Google Scholar]
  31. French C., Menegazzi P., Nicholson L., Macaulay H., DiLuca D., Gompels U. A.. ( 1999;). Novel, nonconsensus cellular splicing regulates expression of a gene encoding a chemokine-like protein that shows high variation and is specific for human herpesvirus 6. . Virology 262:, 139–151. [CrossRef][PubMed]
    [Google Scholar]
  32. Gompels U. A., Kasolo F. C.. ( 2006;). HHV-6 genome: similar and different. . In Human Herpesvirus-6 General Virology, Epidemiology and Clinical Pathology (Perspectives in Medical Virology vol. 12), , 2nd edn., pp. 23–46. Edited by Kreuger G., Ablashi D... Amsterdam:: Elsevier;. [CrossRef]
    [Google Scholar]
  33. Gompels U. A., Macaulay H. A.. ( 1995;). Characterization of human telomeric repeat sequences from human herpesvirus 6 and relationship to replication. . J Gen Virol 76:, 451–458. [CrossRef][PubMed]
    [Google Scholar]
  34. Gompels U. A., Nicholas J., Lawrence G., Jones M., Thomson B. J., Martin M. E., Efstathiou S., Craxton M., Macaulay H. A.. ( 1995;). The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. . Virology 209:, 29–51. [CrossRef][PubMed]
    [Google Scholar]
  35. Goodman A. D., Mock D. J., Powers J. M., Baker J. V., Blumberg B. M.. ( 2003;). Human herpesvirus 6 genome and antigen in acute multiple sclerosis lesions. . J Infect Dis 187:, 1365–1376. [CrossRef][PubMed]
    [Google Scholar]
  36. Gravel A., Hall C. B., Flamand L.. ( 2013;). Sequence analysis of transplacentally acquired human herpesvirus 6 DNA is consistent with transmission of a chromosomally integrated reactivated virus. . J Infect Dis 207:, 1585–1589. [CrossRef][PubMed]
    [Google Scholar]
  37. Hall C. B., Caserta M. T., Schnabel K. C., McDermott M. P., Lofthus G. K., Carnahan J. A., Gilbert L. M., Dewhurst S.. ( 2006;). Characteristics and acquisition of human herpesvirus (HHV) 7 infections in relation to infection with HHV-6. . J Infect Dis 193:, 1063–1069. [CrossRef][PubMed]
    [Google Scholar]
  38. Hall C. B., Caserta M. T., Schnabel K., Shelley L. M., Marino A. S., Carnahan J. A., Yoo C., Lofthus G. K., McDermott M. P.. ( 2008;). Chromosomal integration of human herpesvirus 6 is the major mode of congenital human herpesvirus 6 infection. . Pediatrics 122:, 513–520. [CrossRef][PubMed]
    [Google Scholar]
  39. Huang Y., Hidalgo-Bravo A., Zhang E., Cotton V. E., Mendez-Bermudez A., Wig G., Medina-Calzada Z., Neumann R., Jeffreys A. J.. & other authors ( 2014;). Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome. . Nucleic Acids Res 42:, 315–327. [CrossRef][PubMed]
    [Google Scholar]
  40. Hubacek P., Hyncicova K., Muzikova K., Cinek O., Zajac M., Sedlacek P.. ( 2007a;). Disappearance of pre-existing high HHV-6 DNA load in blood after allogeneic SCT. . Bone Marrow Transplant 40:, 805–806. [CrossRef][PubMed]
    [Google Scholar]
  41. Hubacek P., Maalouf J., Zajickova M., Kouba M., Cinek O., Hyncicova K., Fales I., Cetkovsky P.. ( 2007b;). Failure of multiple antivirals to affect high HHV-6 DNAaemia resulting from viral chromosomal integration in case of severe aplastic anaemia. . Haematologica 92:, e98–e100. [CrossRef][PubMed]
    [Google Scholar]
  42. Hubacek P., Muzikova K., Hrdlickova A., Cinek O., Hyncicova K., Hrstkova H., Sedlacek P., Stary J.. ( 2009a;). Prevalence of HHV-6 integrated chromosomally among children treated for acute lymphoblastic or myeloid leukemia in the Czech Republic. . J Med Virol 81:, 258–263. [CrossRef][PubMed]
    [Google Scholar]
  43. Hubacek P., Virgili A., Ward K. N., Pohlreich D., Keslova P., Goldova B., Markova M., Zajac M., Cinek O.. & other authors ( 2009b;). HHV-6 DNA throughout the tissues of two stem cell transplant patients with chromosomally integrated HHV-6 and fatal CMV pneumonitis. . Br J Haematol 145:, 394–398. [CrossRef][PubMed]
    [Google Scholar]
  44. Hubacek P., Hrdlickova A., Spacek M., Zajac M., Muzikova K., Sedlacek P., Cetkovsky P.. ( 2013;). Prevalence of chromosomally integrated HHV-6 in patients with malignant disease and healthy donors in the Czech Republic. . Folia Microbiol (Praha) 58:, 87–90. [CrossRef][PubMed]
    [Google Scholar]
  45. Kasolo F. C., Mpabalwani E., Gompels U. A.. ( 1997;). Infection with AIDS-related herpesviruses in human immunodeficiency virus-negative infants and endemic childhood Kaposi’s sarcoma in Africa. . J Gen Virol 78:, 847–855.[PubMed]
    [Google Scholar]
  46. Katsafanas G. C., Schirmer E. C., Wyatt L. S., Frenkel N.. ( 1996;). In vitro activation of human herpesviruses 6 and 7 from latency. . Proc Natl Acad Sci U S A 93:, 9788–9792. [CrossRef][PubMed]
    [Google Scholar]
  47. Kawabata A., Jasirwan C., Yamanishi K., Mori Y.. ( 2012;). Human herpesvirus 6 glycoprotein M is essential for virus growth and requires glycoprotein N for its maturation. . Virology 429:, 21–28. [CrossRef][PubMed]
    [Google Scholar]
  48. Kawabe S., Ito Y., Ohta R., Sofue A., Gotoh K., Morishima T., Kimura H.. ( 2010;). Comparison of the levels of human herpesvirus 6 (HHV-6) DNA and cytokines in the cerebrospinal fluid and serum of children with HHV-6 encephalopathy. . J Med Virol 82:, 1410–1415. [CrossRef][PubMed]
    [Google Scholar]
  49. Kozak M.. ( 1989;). The scanning model for translation: an update. . J Cell Biol 108:, 229–241. [CrossRef][PubMed]
    [Google Scholar]
  50. Kozak M.. ( 1995;). Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. . Proc Natl Acad Sci U S A 92:, 2662–2666. [CrossRef][PubMed]
    [Google Scholar]
  51. Krueger G. R. F., Rojo J., Buja L. M., Lassner D., Kuehl U.. ( 2008;). Human herpesvirus-6 (HHV-6) is a possible cardiac pathogen: an immunopathological and ultrastructural study. . Rev Med Hosp Gen (Mex) 71:, 187–191.
    [Google Scholar]
  52. Kühl U., Pauschinger M., Noutsias M., Seeberg B., Bock T., Lassner D., Poller W., Kandolf R., Schultheiss H. P.. ( 2005a;). High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. . Circulation 111:, 887–893. [CrossRef][PubMed]
    [Google Scholar]
  53. Kühl U., Pauschinger M., Seeberg B., Lassner D., Noutsias M., Poller W., Schultheiss H. P.. ( 2005b;). Viral persistence in the myocardium is associated with progressive cardiac dysfunction. . Circulation 112:, 1965–1970. [CrossRef][PubMed]
    [Google Scholar]
  54. Lee S. O., Brown R. A., Razonable R. R.. ( 2011;). Clinical significance of pretransplant chromosomally integrated human herpesvirus-6 in liver transplant recipients. . Transplantation 92:, 224–229. [CrossRef][PubMed]
    [Google Scholar]
  55. Leong H. N., Tuke P. W., Tedder R. S., Khanom A. B., Eglin R. P., Atkinson C. E., Ward K. N., Griffiths P. D., Clark D. A.. ( 2007;). The prevalence of chromosomally integrated human herpesvirus 6 genomes in the blood of UK blood donors. . J Med Virol 79:, 45–51. [CrossRef][PubMed]
    [Google Scholar]
  56. Li H., Durbin R.. ( 2009;). Fast and accurate short read alignment with Burrows-Wheeler transform. . Bioinformatics 25:, 1754–1760. [CrossRef][PubMed]
    [Google Scholar]
  57. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R..1000 Genome Project Data Processing Subgroup ( 2009;). The sequence alignment/map format and SAMtools. . Bioinformatics 25:, 2078–2079. [CrossRef][PubMed]
    [Google Scholar]
  58. Loney E. R., Inglis P. W., Sharp S., Pryde F. E., Kent N. A., Mellor J., Louis E. J.. ( 2009;). Repressive and non-repressive chromatin at native telomeres in Saccharomyces cerevisiae. . Epigenetics Chromatin 2:, 18. [CrossRef][PubMed]
    [Google Scholar]
  59. Lüttichau H. R., Clark-Lewis I., Jensen P. O., Moser C., Gerstoft J., Schwartz T. W.. ( 2003;). A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6. . J Biol Chem 278:, 10928–10933. [CrossRef][PubMed]
    [Google Scholar]
  60. Mattick C., Dewin D., Polley S., Sevilla-Reyes E., Pignatelli S., Rawlinson W., Wilkinson G., Dal Monte P., Gompels U. A.. ( 2004;). Linkage of human cytomegalovirus glycoprotein gO variant groups identified from worldwide clinical isolates with gN genotypes, implications for disease associations and evidence for N-terminal sites of positive selection. . Virology 318:, 582–597. [CrossRef][PubMed]
    [Google Scholar]
  61. Milne R. S., Mattick C., Nicholson L., Devaraj P., Alcami A., Gompels U. A.. ( 2000;). RANTES binding and down-regulation by a novel human herpesvirus-6 beta chemokine receptor. . J Immunol 164:, 2396–2404. [CrossRef][PubMed]
    [Google Scholar]
  62. Montoya J. G., Neely M. N., Gupta S., Lunn M. R., Loomis K. S., Pritchett J. C., Polsky B., Medveczky P. G.. ( 2012;). Antiviral therapy of two patients with chromosomally-integrated human herpesvirus-6A presenting with cognitive dysfunction. . J Clin Virol 55:, 40–45. [CrossRef][PubMed]
    [Google Scholar]
  63. Morissette G., Flamand L.. ( 2010;). Herpesviruses and chromosomal integration. . J Virol 84:, 12100–12109. [CrossRef][PubMed]
    [Google Scholar]
  64. Niu J., Kolattukudy P. E.. ( 2009;). Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. . Clin Sci (Lond) 117:, 95–109. [CrossRef][PubMed]
    [Google Scholar]
  65. Pantry S. N., Medveczky M. M., Arbuckle J. H., Luka J., Montoya J. G., Hu J., Renne R., Peterson D., Pritchett J. C.. & other authors ( 2013;). Persistent human herpesvirus-6 infection in patients with an inherited form of the virus. . J Med Virol 85:, 1940–1946. [CrossRef][PubMed]
    [Google Scholar]
  66. Pellett P. E., Ablashi D. V., Ambros P. F., Agut H., Caserta M. T., Descamps V., Flamand L., Gautheret-Dejean A., Hall C. B.. & other authors ( 2011;). Chromosomally integrated human herpesvirus 6: questions and answers. . Rev Med Virol 22:, 144–155. [CrossRef][PubMed]
    [Google Scholar]
  67. Potenza L., Barozzi P., Masetti M., Pecorari M., Bresciani P., Gautheret-Dejean A., Riva G., Vallerini D., Tagliazucchi S.. & other authors ( 2009;). Prevalence of human herpesvirus-6 chromosomal integration (CIHHV-6) in Italian solid organ and allogeneic stem cell transplant patients. . Am J Transplant 9:, 1690–1697. [CrossRef][PubMed]
    [Google Scholar]
  68. Prusty B. K., Krohne G., Rudel T.. ( 2013;). Reactivation of chromosomally integrated human herpesvirus-6 by telomeric circle formation. . PLoS Genet 9:, e1004033. [CrossRef][PubMed]
    [Google Scholar]
  69. Rotola A., Ravaioli T., Gonelli A., Dewhurst S., Cassai E., Di Luca D.. ( 1998;). U94 of human herpesvirus 6 is expressed in latently infected peripheral blood mononuclear cells and blocks viral gene expression in transformed lymphocytes in culture. . Proc Natl Acad Sci U S A 95:, 13911–13916. [CrossRef][PubMed]
    [Google Scholar]
  70. Sjahril R., Isegawa Y., Tanaka T., Nakano K., Yoshikawa T., Asano Y., Ohshima A., Yamanishi K., Sugimoto N.. ( 2009;). Relationship between U83 gene variation in human herpesvirus 6 and secretion of the U83 gene product. . Arch Virol 154:, 273–283. [CrossRef][PubMed]
    [Google Scholar]
  71. Szpara M. L., Gatherer D., Ochoa A., Greenbaum B., Dolan A., Bowden R. J., Enquist L. W., Legendre M., Davison A. J.. ( 2014;). Evolution and diversity in human herpes simplex virus genomes. . J Virol 88:, 1209–1227. [CrossRef][PubMed]
    [Google Scholar]
  72. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  73. Tan T. C., Rahman R., Jaber-Hijazi F., Felix D. A., Chen C., Louis E. J., Aboobaker A.. ( 2012;). Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms. . Proc Natl Acad Sci U S A 109:, 4209–4214. [CrossRef][PubMed]
    [Google Scholar]
  74. Tanaka-Taya K., Sashihara J., Kurahashi H., Amo K., Miyagawa H., Kondo K., Okada S., Yamanishi K.. ( 2004;). Human herpesvirus 6 (HHV-6) is transmitted from parent to child in an integrated form and characterization of cases with chromosomally integrated HHV-6 DNA. . J Med Virol 73:, 465–473. [CrossRef][PubMed]
    [Google Scholar]
  75. Tedder R. S., Briggs M., Cameron C. H., Honess R., Robertson D., Whittle H.. ( 1987;). A novel lymphotropic herpesvirus. . Lancet 330:, 390–392. [CrossRef][PubMed]
    [Google Scholar]
  76. Turner S., DiLuca D., Gompels U.. ( 2002;). Characterisation of a human herpesvirus 6 variant A ‘amplicon’ and replication modulation by U94-Rep ‘latency gene’. . J Virol Methods 105:, 331–341. [CrossRef][PubMed]
    [Google Scholar]
  77. Tzoulaki I., Siontis K. C., Evangelou E., Ioannidis J. P.. ( 2013;). Bias in associations of emerging biomarkers with cardiovascular disease. . JAMA Intern Med 173:, 664–671. [CrossRef][PubMed]
    [Google Scholar]
  78. Villeda S. A., Luo J., Mosher K. I., Zou B., Britschgi M., Bieri G., Stan T. M., Fainberg N., Ding Z.. & other authors ( 2011;). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. . Nature 477:, 90–94. [CrossRef][PubMed]
    [Google Scholar]
  79. Virtanen J. O., Herrgård E., Valmari P., Ahlqvist J., Fogdell-Hahn A., Vaheri A., Koskiniemi M.. ( 2007;). Confirmed primary HHV-6 infection in children with suspected encephalitis. . Neuropediatrics 38:, 292–297. [CrossRef][PubMed]
    [Google Scholar]
  80. Virtanen J. O., Pietiläinen-Nicklén J., Uotila L., Färkkilä M., Vaheri A., Koskiniemi M.. ( 2011;). Intrathecal human herpesvirus 6 antibodies in multiple sclerosis and other demyelinating diseases presenting as oligoclonal bands in cerebrospinal fluid. . J Neuroimmunol 237:, 93–97. [CrossRef][PubMed]
    [Google Scholar]
  81. Ward K. N., Andrews N. J., Verity C. M., Miller E., Ross E. M.. ( 2005;). Human herpesviruses-6 and -7 each cause significant neurological morbidity in Britain and Ireland. . Arch Dis Child 90:, 619–623. [CrossRef][PubMed]
    [Google Scholar]
  82. Wilkie G. S., Davison A. J., Watson M., Kerr K., Sanderson S., Bouts T., Steinbach F., Dastjerdi A.. ( 2013;). Complete genome sequences of elephant endotheliotropic herpesviruses 1A and 1B determined directly from fatal cases. . J Virol 87:, 6700–6712. [CrossRef][PubMed]
    [Google Scholar]
  83. Yoshinari S., Hamano S., Minamitani M., Tanaka M., Eto Y.. ( 2007;). Human herpesvirus 6 encephalopathy predominantly affecting the frontal lobes. . Pediatr Neurol 36:, 13–16. [CrossRef][PubMed]
    [Google Scholar]
  84. Zerr D. M.. ( 2006;). Human herpesvirus 6 and central nervous system disease in hematopoietic cell transplantation. . J Clin Virol 37: (Suppl 1), S52–S56. [CrossRef][PubMed]
    [Google Scholar]
  85. Zerr D. M., Fann J. R., Breiger D., Boeckh M., Adler A. L., Xie H., Delaney C., Huang M. L., Corey L., Leisenring W. M.. ( 2011;). HHV-6 reactivation and its effect on delirium and cognitive functioning in hematopoietic cell transplantation recipients. . Blood 117:, 5243–5249. [CrossRef][PubMed]
    [Google Scholar]
  86. Zhen Z., Bradel-Tretheway B., Sumagin S., Bidlack J. M., Dewhurst S.. ( 2005;). The human herpesvirus 6 G protein-coupled receptor homolog U51 positively regulates virus replication and enhances cell-cell fusion in vitro. . J Virol 79:, 11914–11924. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.068536-0
Loading
/content/journal/jgv/10.1099/vir.0.068536-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error