1887

Abstract

Previous studies have shown that hepatitis C virus (HCV) enters human hepatic cells through interaction with a series of cellular receptors, followed by clathrin-mediated, pH-dependent endocytosis. Here, we investigated the mechanisms of HCV entry into multiple HCV-permissive human hepatocyte-derived cells using trans-complemented HCV particles (HCVtcp). Knockdown of CD81 and claudin-1, or treatment with bafilomycin A1, reduced infection in Huh-7 and Huh7.5.1 cells, suggesting that HCV entered both cell types via receptor-mediated, pH-dependent endocytosis. Interestingly, knockdown of the clathrin heavy chain or dynamin-2 (Dyn2), as well as expression of the dominant-negative form of Dyn2, reduced infection of Huh-7 cells with HCVtcp, whereas infectious entry of HCVtcp into Huh7.5.1 cells was not impaired. Infection of Huh7.5.1 cells with culture-derived HCV (HCVcc) via a clathrin-independent pathway was also observed. Knockdown of caveolin-1, ADP-ribosylation factor 6 (Arf6), flotillin, p21-activated kinase 1 (PAK1) and the PAK1 effector C-terminal binding protein 1 of E1A had no inhibitory effects on HCVtcp infection into Huh7.5.1 cells, thus suggesting that the infectious entry pathway of HCV into Huh7.5.1 cells was not caveolae-mediated, or Arf6- and flotillin-mediated endocytosis and macropinocytosis, but rather may have occurred via an undefined endocytic pathway. Further analysis revealed that HCV entry was clathrin- and dynamin-dependent in ORL8c and HepCD81/miR122 cells, but productive entry of HCV was clathrin- and dynamin-independent in Hep3B/miR122 cells. Collectively, these data indicated that HCV entered different target cells through different entry routes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.068528-0
2014-12-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/12/2658.html?itemId=/content/journal/jgv/10.1099/vir.0.068528-0&mimeType=html&fmt=ahah

References

  1. Acosta E. G. , Castilla V. , Damonte E. B. . ( 2008; ). Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. . J Gen Virol 89:, 474–484. [CrossRef] [PubMed]
    [Google Scholar]
  2. Acosta E. G. , Castilla V. , Damonte E. B. . ( 2009; ). Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. . Cell Microbiol 11:, 1533–1549. [CrossRef] [PubMed]
    [Google Scholar]
  3. Akazawa D. , Date T. , Morikawa K. , Murayama A. , Omi N. , Takahashi H. , Nakamura N. , Ishii K. , Suzuki T. . & other authors ( 2008; ). Characterization of infectious hepatitis C virus from liver-derived cell lines. . Biochem Biophys Res Commun 377:, 747–751. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bartosch B. , Vitelli A. , Granier C. , Goujon C. , Dubuisson J. , Pascale S. , Scarselli E. , Cortese R. , Nicosia A. , Cosset F. L. . ( 2003; ). Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. . J Bio Chem 278:, 41624–41630.[CrossRef]
    [Google Scholar]
  5. Benedicto I. , Molina-Jimenez F. , Bartosch B. , Cosset F. L. , Lavillette D. , Prieto J. , Moreno-Otero R. , Valenzuela-Fernandez A. , Aldabe R. , Lopez-Cabrera M. , Majano P. L. . ( 2009; ). The tight junction-associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection. . J Virol 83:, 8012–8020.[CrossRef]
    [Google Scholar]
  6. Blanchard E. , Belouzard S. , Goueslain L. , Wakita T. , Dubuisson J. , Wychowski C. , Rouillé Y. . ( 2006; ). Hepatitis C virus entry depends on clathrin-mediated endocytosis. . J Virol 80:, 6964–6972. [CrossRef] [PubMed]
    [Google Scholar]
  7. Blight K. J. , McKeating J. A. , Rice C. M. . ( 2002; ). Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. . J Virol 76:, 13001–13014. [CrossRef] [PubMed]
    [Google Scholar]
  8. Codran A. , Royer C. , Jaeck D. , Bastien-Valle M. , Baumert T. F. , Kieny M. P. , Pereira C. A. , Martin J. P. . ( 2006; ). Entry of hepatitis C virus pseudotypes into primary human hepatocytes by clathrin-dependent endocytosis. . J Gen Virol 87:, 2583–2593. [CrossRef] [PubMed]
    [Google Scholar]
  9. Coller K. E. , Berger K. L. , Heaton N. S. , Cooper J. D. , Yoon R. , Randall G. . ( 2009; ). RNA interference and single particle tracking analysis of hepatitis C virus endocytosis. . PLoS Pathog 5:, e1000702. [CrossRef] [PubMed]
    [Google Scholar]
  10. Damke H. , Baba T. , van der Bliek A. M. , Schmid S. L. . ( 1995; ). Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. . J Cell Biol 131:, 69–80. [CrossRef] [PubMed]
    [Google Scholar]
  11. Damm E. M. , Pelkmans L. , Kartenbeck J. , Mezzacasa A. , Kurzchalia T. , Helenius A. . ( 2005; ). Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. . J Cell Biol 168:, 477–488. [CrossRef] [PubMed]
    [Google Scholar]
  12. Evans M. J. , von Hahn T. , Tscherne D. M. , Syder A. J. , Panis M. , Wolk B. , Hatziioannou T. , McKeating J. A. , Bieniasz P. D. , Rice C. M. . ( 2007; ). Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. . Nature 446:, 801–805.[CrossRef]
    [Google Scholar]
  13. Grove J. , Marsh M. . ( 2011; ). The cell biology of receptor-mediated virus entry. . J Cell Biol 195:, 1071–1082. [CrossRef] [PubMed]
    [Google Scholar]
  14. Grove J. , Nielsen S. , Zhong J. , Bassendine M. F. , Drummer H. E. , Balfe P. , McKeating J. A. . ( 2008; ). Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. . J Virol 82:, 12020–12029. [CrossRef] [PubMed]
    [Google Scholar]
  15. Helle F. , Vieyres G. , Elkrief L. , Popescu C.-I. , Wychowski C. , Descamps V. , Castelain S. , Roingeard P. , Duverlie G. , Dubuisson J. . ( 2010; ). Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions. . J Virol 84:, 11905–11915. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hoofnagle J. H. . ( 2002; ). Course and outcome of hepatitis C. . Hepatology 36: (Suppl 1), S21–S29. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kambara H. , Fukuhara T. , Shiokawa M. , Ono C. , Ohara Y. , Kamitani W. , Matsuura Y. . ( 2012; ). Establishment of a novel permissive cell line for the propagation of hepatitis C virus by expression of microRNA miR122. . J Virol 86:, 1382–1393. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kataoka C. , Kaname Y. , Taguwa S. , Abe T. , Fukuhara T. , Tani H. , Moriishi K. , Matsuura Y. . ( 2012; ). Baculovirus GP64-mediated entry into mammalian cells. . J Virol 86:, 2610–2620. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kato N. , Mori K. , Abe K. , Dansako H. , Kuroki M. , Ariumi Y. , Wakita T. , Ikeda M. . ( 2009; ). Efficient replication systems for hepatitis C virus using a new human hepatoma cell line. . Virus Res 146:, 41–50. [CrossRef] [PubMed]
    [Google Scholar]
  20. Liu S. , Yang W. , Shen L. , Turner J. R. , Coyne C. B. , Wang T. . ( 2009; ). Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. . J Virol 83:, 2011–2014.[CrossRef]
    [Google Scholar]
  21. Lupberger J. , Zeisel M. B. , Xiao F. , Thumann C. , Fofana I. , Zona L. , Davis C. , Mee C. J. , Turek M. . & other authors ( 2011; ). EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. . Nat Med 17:, 589–595. [CrossRef] [PubMed]
    [Google Scholar]
  22. Marsh M. , Helenius A. . ( 2006; ). Virus entry: open sesame. . Cell 124:, 729–740. [CrossRef] [PubMed]
    [Google Scholar]
  23. Matlin K. S. , Reggio H. , Helenius A. , Simons K. . ( 1981; ). Infectious entry pathway of influenza virus in a canine kidney cell line. . J Cell Biol 91:, 601–613. [CrossRef] [PubMed]
    [Google Scholar]
  24. McKeating J. A. , Zhang L. Q. , Logvinoff C. , Flint M. , Zhang J. , Yu J. , Butera D. , Ho D. D. , Dustin L. B. , Rice C. M. , Balfe P. . ( 2004; ). Diverse hepatitis C virus glycoproteins mediate viral infection in a CD81-dependent manner. . Journal of virology 78:, 8496–8505.[CrossRef]
    [Google Scholar]
  25. Meertens L. , Bertaux C. , Dragic T. . ( 2006; ). Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. . J Virol 80:, 11571–11578. [CrossRef] [PubMed]
    [Google Scholar]
  26. Mercer J. , Schelhaas M. , Helenius A. . ( 2010; ). Virus entry by endocytosis. . Annu Rev Biochem 79:, 803–833. [CrossRef] [PubMed]
    [Google Scholar]
  27. Miaczynska M. , Stenmark H. . ( 2008; ). Mechanisms and functions of endocytosis. . J Cell Biol 180:, 7–11. [CrossRef] [PubMed]
    [Google Scholar]
  28. Mosso C. , Galván-Mendoza I. J. , Ludert J. E. , del Angel R. M. . ( 2008; ). Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. . Virology 378:, 193–199. [CrossRef] [PubMed]
    [Google Scholar]
  29. Norkin L. C. , Anderson H. A. , Wolfrom S. A. , Oppenheim A. . ( 2002; ). Caveolar endocytosis of simian virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, where the virus disassembles. . J Virol 76:, 5156–5166. [CrossRef] [PubMed]
    [Google Scholar]
  30. Pelkmans L. , Kartenbeck J. , Helenius A. . ( 2001; ). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. . Nat Cell Biol 3:, 473–483. [CrossRef] [PubMed]
    [Google Scholar]
  31. Pileri P. , Uematsu Y. , Campagnoli S. , Galli G. , Falugi F. , Petracca R. , Weiner A. J. , Houghton M. , Rosa D. , Grandi G. , Abrignani S. . ( 1998; ). Binding of hepatitis C virus to CD81. . Science 282:, 938–941.[CrossRef]
    [Google Scholar]
  32. Ploss A. , Evans M. J. , Gaysinskaya V. A. , Panis M. , You H. , de Jong Y. P. , Rice C. M. . ( 2009; ). Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. . Nature 457:, 882–886.[CrossRef]
    [Google Scholar]
  33. Sainz B. Jr , Barretto N. , Martin D. N. , Hiraga N. , Imamura M. , Hussain S. , Marsh K. A. , Yu X. , Chayama K. . & other authors ( 2012; ). Identification of the Niemann–Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. . Nat Med 18:, 281–285. [CrossRef] [PubMed]
    [Google Scholar]
  34. Scarselli E. , Ansuini H. , Cerino R. , Roccasecca R. M. , Acali S. , Filocamo G. , Traboni C. , Nicosia A. , Cortese R. , Vitelli A. . ( 2002; ). The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. . Embo J 21:, 5017–5025.[CrossRef]
    [Google Scholar]
  35. Sieczkarski S. B. , Whittaker G. R. . ( 2002a; ). Dissecting virus entry via endocytosis. . J Gen Virol 83:, 1535–1545.[PubMed]
    [Google Scholar]
  36. Sieczkarski S. B. , Whittaker G. R. . ( 2002b; ). Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. . J Virol 76:, 10455–10464. [CrossRef] [PubMed]
    [Google Scholar]
  37. Sumpter R. Jr , Loo Y.-M. , Foy E. , Li K. , Yoneyama M. , Fujita T. , Lemon S. M. , Gale M. Jr . ( 2005; ). Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. . J Virol 79:, 2689–2699. [CrossRef] [PubMed]
    [Google Scholar]
  38. Suzuki T. , Ishii K. , Aizaki H. , Wakita T. . ( 2007; ). Hepatitis C viral life cycle. . Adv Drug Deliv Rev 59:, 1200–1212. [CrossRef] [PubMed]
    [Google Scholar]
  39. Suzuki R. , Saito K. , Kato T. , Shirakura M. , Akazawa D. , Ishii K. , Aizaki H. , Kanegae Y. , Matsuura Y. . & other authors ( 2012; ). Trans-complemented hepatitis C virus particles as a versatile tool for study of virus assembly and infection. . Virology 432:, 29–38. [CrossRef] [PubMed]
    [Google Scholar]
  40. Suzuki R. , Matsuda M. , Watashi K. , Aizaki H. , Matsuura Y. , Wakita T. , Suzuki T. . ( 2013; ). Signal peptidase complex subunit 1 participates in the assembly of hepatitis C virus through an interaction with E2 and NS2. . PLoS Pathog 9:, e1003589. [CrossRef] [PubMed]
    [Google Scholar]
  41. Trotard M. , Lepère-Douard C. , Régeard M. , Piquet-Pellorce C. , Lavillette D. , Cosset F. L. , Gripon P. , Le Seyec J. . ( 2009; ). Kinases required in hepatitis C virus entry and replication highlighted by small interference RNA screening. . FASEB J 23:, 3780–3789. [CrossRef] [PubMed]
    [Google Scholar]
  42. van der Schaar H. M. , Rust M. J. , Chen C. , van der Ende-Metselaar H. , Wilschut J. , Zhuang X. , Smit J. M. . ( 2008; ). Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. . PLoS Pathog 4:, e1000244. [CrossRef] [PubMed]
    [Google Scholar]
  43. Vieyres G. , Thomas X. , Descamps V. , Duverlie G. , Patel A. H. , Dubuisson J. . ( 2010; ). Characterization of the envelope glycoproteins associated with infectious hepatitis C virus. . J Virol 84:, 10159–10168. [CrossRef] [PubMed]
    [Google Scholar]
  44. Zhong J. , Gastaminza P. , Cheng G. , Kapadia S. , Kato T. , Burton D. R. , Wieland S. F. , Uprichard S. L. , Wakita T. , Chisari F. V. . ( 2005; ). Robust hepatitis C virus infection in vitro . . Proc Natl Acad Sci U S A 102:, 9294–9299. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.068528-0
Loading
/content/journal/jgv/10.1099/vir.0.068528-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error