1887

Abstract

Replicon-particle-based vaccines combine the efficacy of live-attenuated vaccines with the safety of inactivated or subunit vaccines. Recently, we developed Rift Valley fever virus (RVFV) replicon particles, also known as nonspreading RVFV (NSR), and demonstrated that a single vaccination with these particles can confer sterile immunity in target animals. NSR particles can be produced by transfection of replicon cells, which stably maintain replicating RVFV S and L genome segments, with an expression plasmid encoding the RVFV glycoproteins, Gn and Gc, normally encoded by the M-genome segment. Here, we explored the possibility to produce NSR with the use of a helper virus. We show that replicon cells infected with a Newcastle disease virus expressing Gn and Gc (NDV-GnGc) were able to produce high levels of NSR particles. In addition, using reverse genetics and site-directed mutagenesis, we were able to create an NDV-GnGc variant that lacks the NDV fusion protein and contains two amino acid substitutions in, respectively, Gn and HN. The resulting virus uses a unique entry pathway that facilitates the efficient production of NSR in a one-component system. The novel system provides a promising alternative for transfection-based NSR production.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.067660-0
2014-12-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/12/2638.html?itemId=/content/journal/jgv/10.1099/vir.0.067660-0&mimeType=html&fmt=ahah

References

  1. Barnard B. J. . ( 1979; ). Rift Valley fever vaccine–antibody and immune response in cattle to a live and an inactivated vaccine. . J S Afr Vet Assoc 50:, 155–157.[PubMed]
    [Google Scholar]
  2. Billecocq A. , Spiegel M. , Vialat P. , Kohl A. , Weber F. , Bouloy M. , Haller O. . ( 2004; ). NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. . J Virol 78:, 9798–9806. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bouloy M. , Janzen C. , Vialat P. , Khun H. , Pavlovic J. , Huerre M. , Haller O. . ( 2001; ). Genetic evidence for an interferon-antagonistic function of rift valley fever virus nonstructural protein NSs. . J Virol 75:, 1371–1377. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chang A. , Dutch R. E. . ( 2012; ). Paramyxovirus fusion and entry: multiple paths to a common end. . Viruses 4:, 613–636. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chaudhry Y. , Skinner M. A. , Goodfellow I. G. . ( 2007; ). Recovery of genetically defined murine norovirus in tissue culture by using a fowlpox virus expressing T7 RNA polymerase. . J Gen Virol 88:, 2091–2100. [CrossRef] [PubMed]
    [Google Scholar]
  6. de Boer S. M. , Kortekaas J. , Antonis A. F. , Kant J. , van Oploo J. L. , Rottier P. J. , Moormann R. J. , Bosch B. J. . ( 2010; ). Rift Valley fever virus subunit vaccines confer complete protection against a lethal virus challenge. . Vaccine 28:, 2330–2339. [CrossRef] [PubMed]
    [Google Scholar]
  7. de Boer S. M. , Kortekaas J. , Spel L. , Rottier P. J. , Moormann R. J. , Bosch B. J. . ( 2012a; ). Acid-activated structural reorganization of the Rift Valley fever virus Gc fusion protein. . J Virol 86:, 13642–13652. [CrossRef] [PubMed]
    [Google Scholar]
  8. de Boer S. M. , Kortekaas J. , de Haan C. A. , Rottier P. J. , Moormann R. J. , Bosch B. J. . ( 2012b; ). Heparan Sulfate Facilitates Rift Valley Fever Virus Entry into the Cell. . J Virol 86:, 13767–13771. [CrossRef]
    [Google Scholar]
  9. de Leeuw O. S. , Koch G. , Hartog L. , Ravenshorst N. , Peeters B. P. . ( 2005; ). Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. . J Gen Virol 86:, 1759–1769. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dodd K. A. , Bird B. H. , Metcalfe M. G. , Nichol S. T. , Albariño C. G. . ( 2012; ). Single-dose immunization with virus replicon particles confers rapid robust protection against Rift Valley fever virus challenge. . J Virol 86:, 4204–4212. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dortmans J. C. , Koch G. , Rottier P. J. , Peeters B. P. . ( 2011; ). Virulence of Newcastle disease virus: what is known so far?. Vet Res 42:, 122. [CrossRef] [PubMed]
    [Google Scholar]
  12. Elliott R. M. . ( 1990; ). Molecular biology of the Bunyaviridae. . J Gen Virol 71:, 501–522. [CrossRef] [PubMed]
    [Google Scholar]
  13. Elliott R. M. . ( 1997; ). Emerging viruses: the Bunyaviridae. . Mol Med 3:, 572–577.[PubMed]
    [Google Scholar]
  14. Estevez C. , King D. J. , Luo M. , Yu Q. . ( 2011; ). A single amino acid substitution in the haemagglutinin-neuraminidase protein of Newcastle disease virus results in increased fusion promotion and decreased neuraminidase activities without changes in virus pathotype. . J Gen Virol 92:, 544–551. [CrossRef] [PubMed]
    [Google Scholar]
  15. Goldhaft T. M. . ( 1980; ). Historical note on the origin of the LaSota strain of Newcastle disease virus. . Avian Dis 24:, 297–301. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ikegami T. , Narayanan K. , Won S. , Kamitani W. , Peters C. J. , Makino S. . ( 2009a; ). Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation. . PLoS Pathog 5:, e1000287. [CrossRef] [PubMed]
    [Google Scholar]
  17. Ikegami T. , Narayanan K. , Won S. , Kamitani W. , Peters C. J. , Makino S. . ( 2009b; ). Dual functions of Rift Valley fever virus NSs protein: inhibition of host mRNA transcription and post-transcriptional downregulation of protein kinase PKR. . Ann N Y Acad Sci 1171: (Suppl 1), E75–E85. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kakach L. T. , Wasmoen T. L. , Collett M. S. . ( 1988; ). Rift Valley fever virus M segment: use of recombinant vaccinia viruses to study Phlebovirus gene expression. . J Virol 62:, 826–833.[PubMed]
    [Google Scholar]
  19. Keegan K. , Collett M. S. . ( 1986; ). Use of bacterial expression cloning to define the amino acid sequences of antigenic determinants on the G2 glycoprotein of Rift Valley fever virus. . J Virol 58:, 263–270.[PubMed]
    [Google Scholar]
  20. Kortekaas J. , de Boer S. M. , Kant J. , Vloet R. P. , Antonis A. F. , Moormann R. J. . ( 2010; ). Rift Valley fever virus immunity provided by a paramyxovirus vaccine vector. . Vaccine 28:, 4394–4401. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kortekaas J. , Oreshkova N. , Cobos-Jiménez V. , Vloet R. P. , Potgieter C. A. , Moormann R. J. . ( 2011; ). Creation of a nonspreading Rift Valley fever virus. . J Virol 85:, 12622–12630. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kortekaas J. , Antonis A. F. , Kant J. , Vloet R. P. , Vogel A. , Oreshkova N. , de Boer S. M. , Bosch B. J. , Moormann R. J. . ( 2012; ). Efficacy of three candidate Rift Valley fever vaccines in sheep. . Vaccine 30:, 3423–3429. [CrossRef] [PubMed]
    [Google Scholar]
  23. Langmead B. , Salzberg S. L. . ( 2012; ). Fast gapped-read alignment with Bowtie 2. . Nat Methods 9:, 357–359. [CrossRef] [PubMed]
    [Google Scholar]
  24. Malykhina O. , Yednak M. A. , Collins P. L. , Olivo P. D. , Peeples M. E. . ( 2011; ). A respiratory syncytial virus replicon that is noncytotoxic and capable of long-term foreign gene expression. . J Virol 85:, 4792–4801. [CrossRef] [PubMed]
    [Google Scholar]
  25. McGinnes L. W. , Gravel K. , Morrison T. G. . ( 2002; ). Newcastle disease virus HN protein alters the conformation of the F protein at cell surfaces. . J Virol 76:, 12622–12633. [CrossRef] [PubMed]
    [Google Scholar]
  26. Milne I. , Stephen G. , Bayer M. , Cock P. J. A. , Pritchard L. , Cardle L. , Shaw P. D. , Marshall D. . ( 2013; ). Using Tablet for visual exploration of second-generation sequencing data. . Brief Bioinform 14:, 193–202. [CrossRef] [PubMed]
    [Google Scholar]
  27. Muller R. , Saluzzo J. F. , Lopez N. , Dreier T. , Turell M. , Smith J. , Bouloy M. . ( 1995; ). Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment. . Am J Trop Med Hyg 53:, 405–411.[PubMed]
    [Google Scholar]
  28. Oreshkova N. , van Keulen L. , Kant J. , Moormann R. J. , Kortekaas J. . ( 2013; ). A single vaccination with an improved nonspreading Rift Valley fever virus vaccine provides sterile immunity in lambs. . PLoS ONE 8:, e77461. [CrossRef] [PubMed]
    [Google Scholar]
  29. Oreshkova N. , Cornelissen L. A. , de Haan C. A. , Moormann R. J. , Kortekaas J. . ( 2014; ). Evaluation of nonspreading Rift Valley fever virus as a vaccine vector using influenza virus hemagglutinin as a model antigen. . Vaccine 32:, 5323–5329. [CrossRef] [PubMed]
    [Google Scholar]
  30. Peeters B. P. , de Leeuw O. S. , Koch G. , Gielkens A. L. . ( 1999; ). Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. . J Virol 73:, 5001–5009.[PubMed]
    [Google Scholar]
  31. Peeters B. P. , Gruijthuijsen Y. K. , de Leeuw O. S. , Gielkens A. L. . ( 2000; ). Genome replication of Newcastle disease virus: involvement of the rule-of-six. . Arch Virol 145:, 1829–1845. [CrossRef] [PubMed]
    [Google Scholar]
  32. Porotto M. , Salah Z. W. , Gui L. , DeVito I. , Jurgens E. M. , Lu H. , Yokoyama C. C. , Palermo L. M. , Lee K. K. , Moscona A. . ( 2012; ). Regulation of paramyxovirus fusion activation: the hemagglutinin-neuraminidase protein stabilizes the fusion protein in a pretriggered state. . J Virol 86:, 12838–12848. [CrossRef] [PubMed]
    [Google Scholar]
  33. Römer-Oberdörfer A. , Mundt E. , Mebatsion T. , Buchholz U. J. , Mettenleiter T. C. . ( 1999; ). Generation of recombinant lentogenic Newcastle disease virus from cDNA. . J Gen Virol 80:, 2987–2995.[PubMed]
    [Google Scholar]
  34. Sergel T. A. , McGinnes L. W. , Morrison T. G. . ( 2000; ). A single amino acid change in the Newcastle disease virus fusion protein alters the requirement for HN protein in fusion. . J Virol 74:, 5101–5107. [CrossRef] [PubMed]
    [Google Scholar]
  35. Terasaki K. , Won S. , Makino S. . ( 2013; ). The C-terminal region of Rift Valley fever virus NSm protein targets the protein to the mitochondrial outer membrane and exerts antiapoptotic function. . J Virol 87:, 676–682. [CrossRef] [PubMed]
    [Google Scholar]
  36. Weingartl H. M. , Zhang S. , Marszal P. , McGreevy A. , Burton L. , Wilson W. C. . ( 2014; ). Rift Valley fever virus incorporates the 78 kDa glycoprotein into virions matured in mosquito C6/36 cells. . PLoS ONE 9:, e87385. [CrossRef] [PubMed]
    [Google Scholar]
  37. Won S. , Ikegami T. , Peters C. J. , Makino S. . ( 2007; ). NSm protein of Rift Valley fever virus suppresses virus-induced apoptosis. . J Virol 81:, 13335–13345. [CrossRef] [PubMed]
    [Google Scholar]
  38. Yoshizaki M. , Hironaka T. , Iwasaki H. , Ban H. , Tokusumi Y. , Iida A. , Nagai Y. , Hasegawa M. , Inoue M. . ( 2006; ). Naked Sendai virus vector lacking all of the envelope-related genes: reduced cytopathogenicity and immunogenicity. . J Gene Med 8:, 1151–1159. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.067660-0
Loading
/content/journal/jgv/10.1099/vir.0.067660-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error