1887

Abstract

Hepatitis E virus (HEV), a major cause of acute viral hepatitis across the world, is a non-enveloped, plus-strand RNA virus. Its genome codes three proteins, pORF1 (multifunctional polyprotein), pORF2 (capsid protein) and pORF3 (multi-regulatory protein). pORF1 encodes methyltransferase, putative papain-like cysteine protease, helicase and replicase enzymes. Of these, the protease domain has not been characterized. On the basis of sequence analysis, we cloned and expressed a protein covering aa 440–610 of pORF1, expression of which led to cell death in BL-21 and Huh7 hepatoma cells. Finally, we expressed and purified this protein from C43 cells (resistant to toxic proteins). The refolded form of this protein showed protease activity in gelatin zymography. Digestion assays showed cleavage of both pORF1 and pORF2 as observed previously. MS revealed digestion of capsid protein at both the N and C termini. N-terminal sequencing of the ~35 kDa methyltransferase, ~35 kDa replicase and ~56 kDa pORF2 proteins released by protease digestion revealed that the cleavage sites were alanine15/isoleucine16, alanine1364/valine1365 in pORF1 and leucine197/valine198 in pORF2. Specificity of these cleavage sites was validated by site-directed mutagenesis. Further characterization of the HEV protease, carried out using twelve inhibitors, showed chymostatin and PMSF to be the most efficient inhibitors, indicating this protein as a chymotrypsin-like protease. The specificity was further confirmed by cleavage of the chymotrypsin-specific fluorogenic peptide -succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin. Mutational analysis of the conserved serine/cysteine/histidine residues suggested that H443 and C472/C481/C483 are possibly the active site residues. To our knowledge, this is the first direct demonstration of HEV protease and its function.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.066142-0
2014-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/8/1689.html?itemId=/content/journal/jgv/10.1099/vir.0.066142-0&mimeType=html&fmt=ahah

References

  1. Agrawal S., Gupta D., Panda S. K.. ( 2001; ). The 3′ end of hepatitis E virus (HEV) genome binds specifically to the viral RNA-dependent RNA polymerase (RdRp). . Virology 282:, 87–101. [CrossRef] [PubMed]
    [Google Scholar]
  2. Allaire M., Chernaia M. M., Malcolm B. A., James M. N.. ( 1994; ). Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. . Nature 369:, 72–76. [CrossRef] [PubMed]
    [Google Scholar]
  3. Ansari I. H., Nanda S. K., Durgapal H., Agrawal S., Mohanty S. K., Gupta D., Jameel S., Panda S. K.. ( 2000; ). Cloning, sequencing, and expression of the hepatitis E virus (HEV) nonstructural open reading frame 1 (ORF1). . J Med Virol 60:, 275–283. [CrossRef] [PubMed]
    [Google Scholar]
  4. Babé L. M., Craik C. S.. ( 1997; ). Viral proteases: evolution of diverse structural motifs to optimize function. . Cell 91:, 427–430. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bass J., Turck C., Rouard M., Steiner D. F.. ( 2000; ). Furin-mediated processing in the early secretory pathway: sequential cleavage and degradation of misfolded insulin receptors. . Proc Natl Acad Sci U S A 22:, 11905–11909. [CrossRef] [PubMed]
    [Google Scholar]
  6. Baum E. Z., Bebernitz G. A., Gluzman Y.. ( 1990; ). Isolation of mutants of human immunodeficiency virus protease based on the toxicity of the enzyme in Escherichia coli . . Proc Natl Acad Sci U S A 87:, 5573–5577. [CrossRef] [PubMed]
    [Google Scholar]
  7. Buck K. W.. ( 1996; ). Comparison of the replication of positive-stranded RNA viruses of plants and animals. . Adv Virus Res 47:, 159–251. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cheng Y. S., Lo K. H., Hsu H. H., Shao Y. M., Yang W. B., Lin C. H., Wong C. H.. ( 2006; ). Screening for HIV protease inhibitors by protection against activity-mediated cytotoxicity in Escherichia coli . . J Virol Methods 137:, 82–87. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dumon-Seignovert L., Cariot G., Vuillard L.. ( 2004; ). The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). . Protein Expr Purif 37:, 203–206. [CrossRef] [PubMed]
    [Google Scholar]
  10. Emerson S. U., Nguyen H., Graff J., Stephany D. A., Brockington A., Purcell R. H.. ( 2004; ). In vitro replication of hepatitis E virus (HEV) genomes and of an HEV replicon expressing green fluorescent protein. . J Virol 78:, 4838–4846. [CrossRef] [PubMed]
    [Google Scholar]
  11. Garnier J., Gibrat J. F., Robson B.. ( 1996; ). GOR method for predicting protein secondary structure from amino acid sequence. . Methods Enzymol 266:, 540–553. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V.. ( 1989; ). Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. . FEBS Lett 243:, 103–114. [CrossRef] [PubMed]
    [Google Scholar]
  13. Graff J., Torian U., Nguyen H., Emerson S. U.. ( 2006; ). A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus. . J Virol 80:, 5919–5926. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hubbard S. J.. ( 1998; ). The structural aspects of limited proteolysis of native proteins. . Biochim Biophys Acta 1382:, 191–206. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kabrane-Lazizi Y., Meng X. J., Purcell R. H., Emerson S. U.. ( 1999; ). Evidence that the genomic RNA of hepatitis E virus is capped. . J Virol 73:, 8848–8850.[PubMed]
    [Google Scholar]
  16. Kapur N., Thakral D., Durgapal H., Panda S. K.. ( 2012; ). Hepatitis E virus enters liver cells through receptor-dependent clathrin-mediated endocytosis. . J Viral Hepat 19:, 436–448. [CrossRef] [PubMed]
    [Google Scholar]
  17. Karpe Y. A., Lole K. S.. ( 2010a; ). NTPase and 5′ to 3′ RNA duplex-unwinding activities of the hepatitis E virus helicase domain. . J Virol 84:, 3595–3602. [CrossRef] [PubMed]
    [Google Scholar]
  18. Karpe Y. A., Lole K. S.. ( 2010b; ). RNA 5′-triphosphatase activity of the hepatitis E virus helicase domain. . J Virol 84:, 9637–9641. [CrossRef] [PubMed]
    [Google Scholar]
  19. Karpe Y. A., Lole K. S.. ( 2011; ). Deubiquitination activity associated with hepatitis E virus putative papain-like cysteine protease. . J Gen Virol 92:, 2088–2092. [CrossRef] [PubMed]
    [Google Scholar]
  20. Koonin E. V., Gorbalenya A. E., Purdy M. A., Rozanov M. N., Reyes G. R., Bradley D. W.. ( 1992; ). Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. . Proc Natl Acad Sci U S A 89:, 8259–8263. [CrossRef] [PubMed]
    [Google Scholar]
  21. Korkaya H., Jameel S., Gupta D., Tyagi S., Kumar R., Zafrullah M., Mazumdar M., Lal S. K., Xiaofang L.. & other authors ( 2001; ). The ORF3 protein of hepatitis E virus binds to Src homology 3 domains and activates MAPK. . J Biol Chem 276:, 42389–42400. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lai M. M.. ( 1998; ). Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. . Virology 244:, 1–12. [CrossRef] [PubMed]
    [Google Scholar]
  23. Magden J., Takeda N., Li T., Auvinen P., Ahola T., Miyamura T., Merits A., Kääriäinen L.. ( 2001; ). Virus-specific mRNA capping enzyme encoded by hepatitis E virus. . J Virol 75:, 6249–6255. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mosimann S. C., Cherney M. M., Sia S., Plotch S., James M. N.. ( 1997; ). Refined X-ray crystallographic structure of the poliovirus 3C gene product. . J Mol Biol 273:, 1032–1047. [CrossRef] [PubMed]
    [Google Scholar]
  25. Mukherjee P., Roy P.. ( 2013; ). Purification and identification of trichloroethylene induced proteins from Stenotrophomonas maltophilia PM102 by immuno-affinity-chromatography and MALDI-TOF Mass spectrometry. . SpringerPlus 2:, 207. [CrossRef] [PubMed]
    [Google Scholar]
  26. Panda S. K., Ansari I. H., Durgapal H., Agrawal S., Jameel S.. ( 2000; ). The in vitro-synthesized RNA from a cDNA clone of hepatitis E virus is infectious. . J Virol 74:, 2430–2437. [CrossRef] [PubMed]
    [Google Scholar]
  27. Parvez M. K.. ( 2013; ). Molecular characterization of hepatitis E virus ORF1 gene supports a papain-like cysteine protease (PCP)-domain activity. . Virus Res 178:, 553–556. [CrossRef] [PubMed]
    [Google Scholar]
  28. Perttilä J., Spuul P., Ahola T.. ( 2013; ). Early secretory pathway localization and lack of processing for hepatitis E virus replication protein pORF1. . J Gen Virol 94:, 807–816. [CrossRef] [PubMed]
    [Google Scholar]
  29. Petersen J. F., Cherney M. M., Liebig H. D., Skern T., Kuechler E., James M. N.. ( 1999; ). The structure of the 2A proteinase from a common cold virus: a proteinase responsible for the shut-off of host-cell protein synthesis. . EMBO J 18:, 5463–5475. [CrossRef] [PubMed]
    [Google Scholar]
  30. Purdy M. A., Tam A. W., Huang C. C., Yarbough P. O., Reyes G. R.. ( 1993; ). Hepatitis E virus: a non-enveloped member of the ‘alpha- like’ RNA virus supergroup. . Semin Virol 4:, 319–326. [CrossRef]
    [Google Scholar]
  31. Reyes G. R., Huang C. C., Tam A. W., Purdy M. A.. ( 1993; ). Molecular organization and replication of hepatitis E virus (HEV). . Arch Virol Suppl 7:, 15–25. [CrossRef] [PubMed]
    [Google Scholar]
  32. Rieger A. M., Nelson K. L., Konowalchuk J. D., Barreda D. R.. ( 2011; ). Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. . J Vis Exp 50:, 2597–2607.[PubMed]
    [Google Scholar]
  33. Ropp S. L., Tam A. W., Beames B., Purdy M., Frey T. K.. ( 2000; ). Expression of the hepatitis E virus ORF1. . Arch Virol 145:, 1321–1337. [CrossRef] [PubMed]
    [Google Scholar]
  34. Sehgal D., Thomas S., Chakraborty M., Jameel S.. ( 2006; ). Expression and processing of the Hepatitis E virus ORF1 nonstructural polyprotein. . Virol J 3:, 38–45. [CrossRef] [PubMed]
    [Google Scholar]
  35. Suppiah S., Zhou Y., Frey T. K.. ( 2011; ). Lack of processing of the expressed ORF1 gene product of hepatitis E virus. . Virol J 8:, 245–249. [CrossRef] [PubMed]
    [Google Scholar]
  36. Surjit M., Jameel S., Lal S. K.. ( 2007; ). Cytoplasmic localization of the ORF2 protein of hepatitis E virus is dependent on its ability to undergo retrotranslocation from the endoplasmic reticulum. . J Virol 81:, 3339–3345. [CrossRef] [PubMed]
    [Google Scholar]
  37. Tam A. W., Smith M. M., Guerra M. E., Huang C. C., Bradley D. W., Fry K. E., Reyes G. R.. ( 1991; ). Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. . Virology 185:, 120–131. [CrossRef] [PubMed]
    [Google Scholar]
  38. Torresi J., Li F., Locarnini S. A., Anderson D. A.. ( 1999; ). Only the non-glycosylated fraction of hepatitis E virus capsid (open reading frame 2) protein is stable in mammalian cells. . J Gen Virol 80:, 1185–1188.[PubMed]
    [Google Scholar]
  39. Viswanathan R.. ( 1957; ). A review of the literature on the epidemiology of infectious hepatitis. . Indian J Med Res 45: (Suppl.), 145–155.[PubMed]
    [Google Scholar]
  40. Yamashita T., Mori Y., Miyazaki N., Cheng R. H., Yoshimura M., Unno H., Shima R., Moriishi K., Tsukihara T.. & other authors ( 2009; ). Biological and immunological characteristics of hepatitis E virus-like particles based on the crystal structure. . Proc Natl Acad Sci U S A 106:, 12986–12991. [CrossRef] [PubMed]
    [Google Scholar]
  41. Zafrullah M., Ozdener M. H., Panda S. K., Jameel S.. ( 1997; ). The ORF3 protein of hepatitis E virus is a phosphoprotein that associates with the cytoskeleton. . J Virol 71:, 9045–9053.[PubMed]
    [Google Scholar]
  42. Zafrullah M., Ozdener M. H., Kumar R., Panda S. K., Jameel S.. ( 1999; ). Mutational analysis of glycosylation, membrane translocation, and cell surface expression of the hepatitis E virus ORF2 protein. . J Virol 73:, 4074–4082.[PubMed]
    [Google Scholar]
  43. Zhang J., Liu X., Scherer D. C., van Kaer L., Wang X., Xu M.. ( 1998; ). Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. . Proc Natl Acad Sci U S A 95:, 12480–12485. [CrossRef] [PubMed]
    [Google Scholar]
  44. Zimmerman M., Ashe B. M.. ( 1977; ). Substrate specificity of the elastase and the chymotrypsin-like enzyme of the human granulocyte. . Biochim Biophys Acta 480:, 241–245. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.066142-0
Loading
/content/journal/jgv/10.1099/vir.0.066142-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error