1887

Abstract

Dengue virus (DENV) infection in humans can cause flu-like illness, life-threatening haemorrhagic fever or even death. There is no specific anti-DENV therapeutic or approved vaccine currently available, partially due to the possibility of antibody-dependent enhancement reaction. Small interfering RNAs (siRNAs) that target specific viral genes are considered a promising therapeutic alternative against DENV infection. However, , siRNAs are vulnerable to degradation by serum nucleases and rapid renal excretion due to their small size and anionic character. To enhance siRNA delivery and stability, we complexed anti-DENV siRNAs with biocompatible gold nanoparticles (AuNPs) and tested them . We found that cationic AuNP–siRNA complexes could enter Vero cells and significantly reduce DENV serotype 2 (DENV-2) replication and infectious virion release under both pre- and post-infection conditions. In addition, RNase-treated AuNP–siRNA complexes could still inhibit DENV-2 replication, suggesting that AuNPs maintained siRNA stability. Collectively, these results demonstrated that AuNPs were able to efficiently deliver siRNAs and control infection , indicating a novel anti-DENV strategy.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.066084-0
2014-08-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/8/1712.html?itemId=/content/journal/jgv/10.1099/vir.0.066084-0&mimeType=html&fmt=ahah

References

  1. Alhoot M. A., Wang S. M., Sekaran S. D.. ( 2011; ). Inhibition of dengue virus entry and multiplication into monocytes using RNA interference. . PLoS Negl Trop Dis 5:, e1410. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bai F., Wang T., Pal U., Bao F., Gould L. H., Fikrig E.. ( 2005; ). Use of RNA interference to prevent lethal murine west nile virus infection. . J Infect Dis 191:, 1148–1154. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bai Z., Liu L., Tu Z., Yao L., Liu J., Xu B., Tang B., Liu J., Wan Y.. & other authors ( 2008; ). Real-time PCR for detecting circulating dengue virus in the Guangdong Province of China in 2006. . J Med Microbiol 57:, 1547–1552. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bhatt S., Gething P. W., Brady O. J., Messina J. P., Farlow A. W., Moyes C. L., Drake J. M., Brownstein J. S., Hoen A. G.. & other authors ( 2013; ). The global distribution and burden of dengue. . Nature 496:, 504–507. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bonafé N., Rininger J. A., Chubet R. G., Foellmer H. G., Fader S., Anderson J. F., Bushmich S. L., Anthony K., Ledizet M.. & other authors ( 2009; ). A recombinant West Nile virus envelope protein vaccine candidate produced in Spodoptera frugiperda expresSF+ cells. . Vaccine 27:, 213–222. [CrossRef] [PubMed]
    [Google Scholar]
  6. Boussif O., Lezoualc’h F., Zanta M. A., Mergny M. D., Scherman D., Demeneix B., Behr J. P.. ( 1995; ). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. . Proc Natl Acad Sci U S A 92:, 7297–7301. [CrossRef] [PubMed]
    [Google Scholar]
  7. Breunig M., Lungwitz U., Liebl R., Goepferich A.. ( 2007; ). Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. . Proc Natl Acad Sci U S A 104:, 14454–14459. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chithrani B. D., Chan W. C.. ( 2007; ). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. . Nano Lett 7:, 1542–1550. [CrossRef] [PubMed]
    [Google Scholar]
  9. Conde J., Ambrosone A., Sanz V., Hernandez Y., Marchesano V., Tian F., Child H., Berry C. C., Ibarra M. R.. & other authors ( 2012; ). Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. . ACS Nano 6:, 8316–8324. [CrossRef] [PubMed]
    [Google Scholar]
  10. Conde J., Tian F., Hernández Y., Bao C., Cui D., Janssen K. P., Ibarra M. R., Baptista P. V., Stoeger T., de la Fuente J. M.. ( 2013; ). In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. . Biomaterials 34:, 7744–7753. [CrossRef] [PubMed]
    [Google Scholar]
  11. Connor E. E., Mwamuka J., Gole A., Murphy C. J., Wyatt M. D.. ( 2005; ). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. . Small 1:, 325–327. [CrossRef] [PubMed]
    [Google Scholar]
  12. Dalrymple N., Mackow E. R.. ( 2011; ). Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. . J Virol 85:, 9478–9485. [CrossRef] [PubMed]
    [Google Scholar]
  13. de Fougerolles A. R.. ( 2008; ). Delivery vehicles for small interfering RNA in vivo. . Hum Gene Ther 19:, 125–132. [CrossRef] [PubMed]
    [Google Scholar]
  14. de Jong W. H., Borm P. J.. ( 2008; ). Drug delivery and nanoparticles:applications and hazards. . Int J Nanomedicine 3:, 133–149. [CrossRef] [PubMed]
    [Google Scholar]
  15. Elbakry A., Zaky A., Liebl R., Rachel R., Goepferich A., Breunig M.. ( 2009; ). Layer-by-layer assembled gold nanoparticles for siRNA delivery. . Nano Lett 9:, 2059–2064. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gao K., Huang L.. ( 2009; ). Nonviral methods for siRNA delivery. . Mol Pharm 6:, 651–658. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gerber A., Bundschuh M., Klingelhofer D., Groneberg D. A.. ( 2013; ). Gold nanoparticles: recent aspects for human toxicology. . J Occup Med Toxicol 8:, 32. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gilleron J., Querbes W., Zeigerer A., Borodovsky A., Marsico G., Schubert U., Manygoats K., Seifert S., Andree C.. & other authors ( 2013; ). Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. . Nat Biotechnol 31:, 638–646. [CrossRef] [PubMed]
    [Google Scholar]
  19. Goel R., Swanlund D., Coad J., Paciotti G. F., Bischof J. C.. ( 2007; ). TNF-alpha-based accentuation in cryoinjury–dose, delivery, and response. . Mol Cancer Ther 6:, 2039–2047. [CrossRef] [PubMed]
    [Google Scholar]
  20. Goel R., Shah N., Visaria R., Paciotti G. F., Bischof J. C.. ( 2009; ). Biodistribution of TNF-alpha-coated gold nanoparticles in an in vivo model system. . Nanomedicine (Lond) 4:, 401–410. [CrossRef] [PubMed]
    [Google Scholar]
  21. Goodman C. M., McCusker C. D., Yilmaz T., Rotello V. M.. ( 2004; ). Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. . Bioconjug Chem 15:, 897–900. [CrossRef] [PubMed]
    [Google Scholar]
  22. Gubler D. J.. ( 2002; ). The global emergence/resurgence of arboviral diseases as public health problems. . Arch Med Res 33:, 330–342. [CrossRef] [PubMed]
    [Google Scholar]
  23. Halstead S. B.. ( 1982; ). Immune enhancement of viral infection. . Prog Allergy 31:, 301–364.[PubMed]
    [Google Scholar]
  24. Halstead S. B.. ( 2007; ). Dengue. . Lancet 370:, 1644–1652. [CrossRef] [PubMed]
    [Google Scholar]
  25. Huang F., Shi Y.. ( 2010; ). Synthesis of symmetrical thiol-adenosine conjugate and 5′ thiol-RNA preparation by efficient one-step transcription. . Bioorg Med Chem Lett 20:, 6254–6257. [CrossRef] [PubMed]
    [Google Scholar]
  26. Idrees S., Ashfaq U. A.. ( 2013; ). RNAi: antiviral therapy against dengue virus. . Asian Pac J Trop Biomed 3:, 232–236. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kliks S. C., Nisalak A., Brandt W. E., Wahl L., Burke D. S.. ( 1989; ). Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. . Am J Trop Med Hyg 40:, 444–451.[PubMed]
    [Google Scholar]
  28. Lee M. Y., Park S. J., Park K., Kim K. S., Lee H., Hahn S. K.. ( 2011; ). Target-specific gene silencing of layer-by-layer assembled gold-cysteamine/siRNA/PEI/HA nanocomplex. . ACS Nano 5:, 6138–6147. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lewinski N., Colvin V., Drezek R.. ( 2008; ). Cytotoxicity of nanoparticles. . Small 4:, 26–49. [CrossRef] [PubMed]
    [Google Scholar]
  30. Libutti S. K., Paciotti G. F., Byrnes A. A., Alexander H. R. Jr, Gannon W. E., Walker M., Seidel G. D., Yuldasheva N., Tamarkin L.. ( 2010; ). Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. . Clin Cancer Res 16:, 6139–6149. [CrossRef] [PubMed]
    [Google Scholar]
  31. Mitra M., Kandalam M., Rangasamy J., Shankar B., Maheswari U. K., Swaminathan S., Krishnakumar S.. ( 2013; ). Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells. . Mol Vis 19:, 1029–1038.[PubMed]
    [Google Scholar]
  32. Mota J., Rico-Hesse R.. ( 2009; ). Humanized mice show clinical signs of dengue fever according to infecting virus genotype. . J Virol 83:, 8638–8645. [CrossRef] [PubMed]
    [Google Scholar]
  33. Pham A. M., Langlois R. A., TenOever B. R.. ( 2012; ). Replication in cells of hematopoietic origin is necessary for Dengue virus dissemination. . PLoS Pathog 8:, e1002465. [CrossRef] [PubMed]
    [Google Scholar]
  34. Puccioni-Sohler M., Orsini M., Soares C. N.. ( 2012; ). Dengue: a new challenge for neurology. . Neurol Int 4:, e15. [CrossRef] [PubMed]
    [Google Scholar]
  35. Ramos M. M., Mohammed H., Zielinski-Gutierrez E., Hayden M. H., Lopez J. L., Fournier M., Trujillo A. R., Burton R., Brunkard J. M.. & other authors ( 2008; ). Epidemic dengue and dengue hemorrhagic fever at the Texas-Mexico border: results of a household-based seroepidemiologic survey, December 2005. . Am J Trop Med Hyg 78:, 364–369.[PubMed]
    [Google Scholar]
  36. Reynolds J. L., Law W. C., Mahajan S. D., Aalinkeel R., Nair B., Sykes D. E., Yong K. T., Hui R., Prasad P. N., Schwartz S. A.. ( 2012; ). Nanoparticle based galectin-1 gene silencing, implications in methamphetamine regulation of HIV-1 infection in monocyte derived macrophages. . J Neuroimmune Pharmacol 7:, 673–685. [CrossRef] [PubMed]
    [Google Scholar]
  37. Richards Grayson A. C., Doody A. M., Putnam D.. ( 2006; ). Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. . Pharm Res 23:, 1868–1876. [CrossRef] [PubMed]
    [Google Scholar]
  38. Sadon N., Delers A., Jarman R. G., Klungthong C., Nisalak A., Gibbons R. V., Vassilev V.. ( 2008; ). A new quantitative RT-PCR method for sensitive detection of dengue virus in serum samples. . J Virol Methods 153:, 1–6. [CrossRef] [PubMed]
    [Google Scholar]
  39. Shukla R., Bansal V., Chaudhary M., Basu A., Bhonde R. R., Sastry M.. ( 2005; ). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. . Langmuir 21:, 10644–10654. [CrossRef] [PubMed]
    [Google Scholar]
  40. Song W. J., Du J. Z., Sun T. M., Zhang P. Z., Wang J.. ( 2010; ). Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. . Small 6:, 239–246. [CrossRef] [PubMed]
    [Google Scholar]
  41. Spurr A. R.. ( 1969; ). A low-viscosity epoxy resin embedding medium for electron microscopy. . J Ultrastruct Res 26:, 31–43. [CrossRef] [PubMed]
    [Google Scholar]
  42. Stein D. A., Perry S. T., Buck M. D., Oehmen C. S., Fischer M. A., Poore E., Smith J. L., Lancaster A. M., Hirsch A. J.. & other authors ( 2011; ). Inhibition of dengue virus infections in cell cultures and in AG129 mice by a small interfering RNA targeting a highly conserved sequence. . J Virol 85:, 10154–10166. [CrossRef] [PubMed]
    [Google Scholar]
  43. Storhoff J. J., Elghanian R., Mucic R. C., Mirkin C. A., Letsinger R. L.. ( 1998; ). One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticles probes. . J Am Chem Soc 120:, 1959–1964. [CrossRef]
    [Google Scholar]
  44. Subramanya S., Kim S. S., Abraham S., Yao J., Kumar M., Kumar P., Haridas V., Lee S. K., Shultz L. D.. & other authors ( 2010; ). Targeted delivery of small interfering RNA to human dendritic cells to suppress dengue virus infection and associated proinflammatory cytokine production. . J Virol 84:, 2490–2501. [CrossRef] [PubMed]
    [Google Scholar]
  45. Thomas M., Klibanov A. M.. ( 2003; ). Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. . Proc Natl Acad Sci U S A 100:, 9138–9143. [CrossRef] [PubMed]
    [Google Scholar]
  46. Tomashek K. M., Margolis H. S.. ( 2011; ). Dengue: a potential transfusion-transmitted disease. . Transfusion 51:, 1654–1660. [CrossRef] [PubMed]
    [Google Scholar]
  47. Torchilin V. P.. ( 2005; ). Recent advances with liposomes as pharmaceutical carriers. . Nat Rev Drug Discov 4:, 145–160. [CrossRef] [PubMed]
    [Google Scholar]
  48. Urban-Klein B., Werth S., Abuharbeid S., Czubayko F., Aigner A.. ( 2005; ). RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. . Gene Ther 12:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  49. van der Schaar H. M., Rust M. J., Chen C., van der Ende-Metselaar H., Wilschut J., Zhuang X., Smit J. M.. ( 2008; ). Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. . PLoS Pathog 4:, e1000244. [CrossRef] [PubMed]
    [Google Scholar]
  50. Wang X., Yu B., Ren W., Mo X., Zhou C., He H., Jia H., Wang L., Jacob S. T.. & other authors ( 2013; ). Enhanced hepatic delivery of siRNA and microRNA using oleic acid based lipid nanoparticle formulations. . J Control Release 172:, 690–698. [CrossRef] [PubMed]
    [Google Scholar]
  51. Wilder-Smith A., Ooi E. E., Vasudevan S. G., Gubler D. J.. ( 2010; ). Update on dengue: epidemiology, virus evolution, antiviral drugs, and vaccine development. . Curr Infect Dis Rep 12:, 157–164. [CrossRef] [PubMed]
    [Google Scholar]
  52. Wu S. J., Grouard-Vogel G., Sun W., Mascola J. R., Brachtel E., Putvatana R., Louder M. K., Filgueira L., Marovich M. A.. & other authors ( 2000; ). Human skin Langerhans cells are targets of dengue virus infection. . Nat Med 6:, 816–820. [CrossRef] [PubMed]
    [Google Scholar]
  53. Xi Z., Ramirez J. L., Dimopoulos G.. ( 2008; ). The Aedes aegypti Toll pathway controls dengue virus infection. . PLoS Pathog 4:, e1000098. [CrossRef] [PubMed]
    [Google Scholar]
  54. Yang C., Yang H., Wu J., Meng Z., Xing R., Tian A., Tian X., Guo L., Zhang Y.. & other authors ( 2013; ). No overt structural or functional changes associated with PEG-coated gold nanoparticles accumulation with acute exposure in the mouse heart. . Toxicol Lett 222:, 197–203. [CrossRef] [PubMed]
    [Google Scholar]
  55. Ye C., Abraham S., Wu H., Shankar P., Manjunath N.. ( 2011; ). Silencing early viral replication in macrophages and dendritic cells effectively suppresses flavivirus encephalitis. . PLoS ONE 6:, e17889. [CrossRef] [PubMed]
    [Google Scholar]
  56. Zhang X. D., Wu D., Shen X., Liu P. X., Yang N., Zhao B., Zhang H., Sun Y. M., Zhang L. A., Fan F. Y.. ( 2011; ). Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. . Int J Nanomedicine 6:, 2071–2081. [CrossRef] [PubMed]
    [Google Scholar]
  57. Zheng D., Giljohann D. A., Chen D. L., Massich M. D., Wang X. Q., Iordanov H., Mirkin C. A., Paller A. S.. ( 2012; ). Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. . Proc Natl Acad Sci U S A 109:, 11975–11980. [CrossRef] [PubMed]
    [Google Scholar]
  58. Zhong Y. Q., Wei J., Fu Y. R., Shao J., Liang Y. W., Lin Y. H., Liu J., Zhu Z. H.. ( 2008; ). [Toxicity of cationic liposome Lipofectamine 2000 in human pancreatic cancer Capan-2 cells]. . Nan Fang Yi Ke Da Xue Xue Bao 28:, 1981–1984 (in Chinese). [PubMed]
    [Google Scholar]
  59. Zhou J., Shum K. T., Burnett J. C., Rossi J. J.. ( 2013; ). Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. . Pharmaceuticals 6:, 85–107. [CrossRef] [PubMed]
    [Google Scholar]
  60. Zintchenko A., Philipp A., Dehshahri A., Wagner E.. ( 2008; ). Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. . Bioconjug Chem 19:, 1448–1455. [CrossRef] [PubMed]
    [Google Scholar]
  61. Zuhorn I. S., Kalicharan R., Hoekstra D.. ( 2002; ). Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. . J Biol Chem 277:, 18021–18028. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.066084-0
Loading
/content/journal/jgv/10.1099/vir.0.066084-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error