1887

Abstract

An important step in poliovirus (PV) infection by the oral route in humans is replication of the virus in lymphatic tissues of the gastrointestinal (GI) tract, thought to be mainly in the Peyer’s patches of the small intestine. No immunocompetent transgenic (tg) mice that express human PV receptor (CD155) under the control of different promoters can be infected orally. The mouse orthologue of human CD155 is Tage4, a protein expressed at the surface of enterocytes and in the Peyer’s patches. We describe here the generation of a tg mouse model in which the Tage4 promoter was used to drive expression of the human PV receptor-coding region (Tage4-CD155tg mice). In this model, CD155 expression was observed by immunostaining in different regions in the Peyer’s patches but not in their germinal centres. Although a similar pattern of staining was observed between 3- and 6-week-old Tage4-CD155tg mice, poliomyelitis was only seen in the younger mice after PV infection by the oral route. When compared with TgPVR21 mice that expressed CD155 driven by its human promoter, 3-week-old Tage4-CD155tg mice were more susceptible to gut infection and paralysis following feeding with PV. Also, Tage4-CD155tg mice exhibited higher susceptibility to poliomyelitis after parenteral inoculation of PV. Remarkably, the LD after intracerebral inoculation of PV was similar in both CD155 tg mouse strains. The CD155 tg mouse model reported here, although moderately susceptible to oral infection, may be suitable to study mechanisms of PV replication in the gastrointestinal tract and to dissect important aspects of PV neuroinvasiveness.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.064535-0
2014-08-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/8/1668.html?itemId=/content/journal/jgv/10.1099/vir.0.064535-0&mimeType=html&fmt=ahah

References

  1. Adkins B., Leclerc C., Marshall-Clarke S.. ( 2004; ). Neonatal adaptive immunity comes of age. . Nat Rev Immunol 4:, 553–564. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baury B., Geraghty R. J., Masson D., Lustenberger P., Spear P. G., Denis M. G.. ( 2001; ). Organization of the rat Tage4 gene and herpesvirus entry activity of the encoded protein. . Gene 265:, 185–194. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bodian D.. ( 1955; ). Emerging concept of poliomyelitis infection. . Science 122:, 105–108. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bodian D.. ( 1959; ). Poliomyelitis: pathogenesis and histopatology. . In Viral and Rickettsial Infections of Man, , 3rd edn., pp. 479–518. Edited by Rivers T. M., Horsfall F. L. Jr.. Philadelphia:: J. B. Lippincott;.
    [Google Scholar]
  5. Bodian D.. ( 1972; ). Poliomyelitis. . In Pathology of The Nervous System, pp. 2323–2344. Edited by Minckler J... New York:: McGraw-Hill;.
    [Google Scholar]
  6. Buisman A. M., Sonsma J. A., van Wijk M. G., Vermeulen J. P., Roholl P. J., Kimman T. G.. ( 2003; ). Pathogenesis of poliovirus infection in PVRTg mice: poliovirus replicates in peritoneal macrophages. . J Gen Virol 84:, 2819–2828. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cello J., Paul A. V., Wimmer E.. ( 2002; ). Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. . Science 297:, 1016–1018. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chadéneau C., LeMoullac B., Denis M. G.. ( 1994; ). A novel member of the immunoglobulin gene superfamily expressed in rat carcinoma cell lines. . J Biol Chem 269:, 15601–15605.[PubMed]
    [Google Scholar]
  9. Crotty S., Hix L., Sigal L. J., Andino R.. ( 2002; ). Poliovirus pathogenesis in a new poliovirus receptor transgenic mouse model: age-dependent paralysis and a mucosal route of infection. . J Gen Virol 83:, 1707–1720.[PubMed]
    [Google Scholar]
  10. Fenner F. J.. ( 1968; ). The Pathogenesis of Viral Infections: the Influence of Age on Resistance to Viral Infections, vol. 2. New York, NY:: Academic Press;.
    [Google Scholar]
  11. Freistadt M. S., Eberle K. E.. ( 1996; ). Correlation between poliovirus type 1 Mahoney replication in blood cells and neurovirulence. . J Virol 70:, 6486–6492.[PubMed]
    [Google Scholar]
  12. Freistadt M. S., Eberle K. E.. ( 2000; ). Hematopoietic cells from CD155-transgenic mice express CD155 and support poliovirus replication ex vivo. . Microb Pathog 29:, 203–212. [CrossRef] [PubMed]
    [Google Scholar]
  13. Freistadt M. S., Fleit H. B., Wimmer E.. ( 1993; ). Poliovirus receptor on human blood cells: a possible extraneural site of poliovirus replication. . Virology 195:, 798–803. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gromeier M., Wimmer E.. ( 1998; ). Mechanism of injury-provoked poliomyelitis. . J Virol 72:, 5056–5060.[PubMed]
    [Google Scholar]
  15. Ida-Hosonuma M., Iwasaki T., Taya C., Sato Y., Li J., Nagata N., Yonekawa H., Koike S.. ( 2002; ). Comparison of neuropathogenicity of poliovirus in two transgenic mouse strains expressing human poliovirus receptor with different distribution patterns. . J Gen Virol 83:, 1095–1105.[PubMed]
    [Google Scholar]
  16. Ida-Hosonuma M., Iwasaki T., Yoshikawa T., Nagata N., Sato Y., Sata T., Yoneyama M., Fujita T., Taya C.. & other authors ( 2005; ). The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. . J Virol 79:, 4460–4469. [CrossRef] [PubMed]
    [Google Scholar]
  17. Iwasaki A., Kelsall B. L.. ( 2000; ). Localization of distinct Peyer’s patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3α, MIP-3β, and secondary lymphoid organ chemokine. . J Exp Med 191:, 1381–1394. [CrossRef] [PubMed]
    [Google Scholar]
  18. Iwasaki A., Welker R., Mueller S., Linehan M., Nomoto A., Wimmer E.. ( 2002; ). Immunofluorescence analysis of poliovirus receptor expression in Peyer’s patches of humans, primates, and CD155 transgenic mice: implications for poliovirus infection. . J Infect Dis 186:, 585–592. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jubelt B., Ropka S. L., Goldfarb S., Waltenbaugh C., Oates R. P.. ( 1991; ). Susceptibility and resistance to poliovirus-induced paralysis of inbred mouse strains. . J Virol 65:, 1035–1040.[PubMed]
    [Google Scholar]
  20. Koike S., Horie H., Ise I., Okitsu A., Yoshida M., Iizuka N., Takeuchi K., Takegami T., Nomoto A.. ( 1990; ). The poliovirus receptor protein is produced both as membrane-bound and secreted forms. . EMBO J 9:, 3217–3224.[PubMed]
    [Google Scholar]
  21. Koike S., Taya C., Kurata T., Abe S., Ise I., Yonekawa H., Nomoto A.. ( 1991; ). Transgenic mice susceptible to poliovirus. . Proc Natl Acad Sci U S A 88:, 951–955. [CrossRef] [PubMed]
    [Google Scholar]
  22. Koike S., Aoki J., Nomoto A.. ( 1994; ). Transgenic mouse for the study of poliovirus pathogenicity. . In Cellular Receptors for Animal Viruses, pp. 463–480. Edited by Wimmer E... Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  23. Kuss S. K., Best G. T., Etheredge C. A., Pruijssers A. J., Frierson J. M., Hooper L. V., Dermody T. S., Pfeiffer J. K.. ( 2011; ). Intestinal microbiota promote enteric virus replication and systemic pathogenesis. . Science 334:, 249–252. [CrossRef] [PubMed]
    [Google Scholar]
  24. Landsteiner K., Popper E.. ( 1909; ). Ubertragung der Poliomyelitis acuta auf Affen. . Z ImmunnitatsForsch Orig 2:, 377–390.
    [Google Scholar]
  25. Lange R., Peng X., Wimmer E., Lipp M., Bernhardt G.. ( 2001; ). The poliovirus receptor CD155 mediates cell-to-matrix contacts by specifically binding to vitronectin. . Virology 285:, 218–227. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lecce J. G.. ( 1972; ). Selective absorption of macromolecules into intestinal epithelium and blood by neonatal mice. . J Nutr 102:, 69–75.[PubMed]
    [Google Scholar]
  27. Levy O.. ( 2007; ). Innate immunity of the newborn: basic mechanisms and clinical correlates. . Nat Rev Immunol 7:, 379–390. [CrossRef] [PubMed]
    [Google Scholar]
  28. Loria R. M., Shadoff N., Kibrick S., Broitman S.. ( 1976; ). Maturation of intestinal defenses against peroral infection with group B coxsackievirus in mice. . Infect Immun 13:, 1397–1401.[PubMed]
    [Google Scholar]
  29. Maheshwari A., Zemlin M.. ( 2006; ). Ontogeny of the intestinal immune system. . Haematol Rep 2:, 18–26.
    [Google Scholar]
  30. Maródi L.. ( 2006; ). Neonatal innate immunity to infectious agents. . Infect Immun 74:, 1999–2006. [CrossRef] [PubMed]
    [Google Scholar]
  31. Mendelsohn C. L., Wimmer E., Racaniello V. R.. ( 1989; ). Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. . Cell 56:, 855–865. [CrossRef] [PubMed]
    [Google Scholar]
  32. Moog F.. ( 1951; ). The functional diffferentiation of the small intestine. II The differentiation of alkaline phosphomonesterase in the duodenum of the mouse. . J Exp Zool 118:, 187–207. [CrossRef]
    [Google Scholar]
  33. Moog F., Grey R. D.. ( 1967; ). Spatial and temporal differentiation of alkaline phosphatase on the intestinal villi of the mouse. . J Cell Biol 32:, C1–C5. [CrossRef] [PubMed]
    [Google Scholar]
  34. Mueller S., Wimmer E., Cello J.. ( 2005; ). Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event. . Virus Res 111:, 175–193. [CrossRef] [PubMed]
    [Google Scholar]
  35. Nathanson N., Kew O. M.. ( 2010; ). From emergence to eradication: the epidemiology of poliomyelitis deconstructed. . Am J Epidemiol 172:, 1213–1229. [CrossRef] [PubMed]
    [Google Scholar]
  36. Ohka S., Igarashi H., Nagata N., Sakai M., Koike S., Nochi T., Kiyono H., Nomoto A.. ( 2007; ). Establishment of a poliovirus oral infection system in human poliovirus receptor-expressing transgenic mice that are deficient in alpha/beta interferon receptor. . J Virol 81:, 7902–7912. [CrossRef] [PubMed]
    [Google Scholar]
  37. Pincus S. E., Diamond D. C., Emini E. A., Wimmer E.. ( 1986; ). Guanidine-selected mutants of poliovirus: mapping of point mutations to polypeptide 2C. . J Virol 57:, 638–646.[PubMed]
    [Google Scholar]
  38. Ravens I., Seth S., Förster R., Bernhardt G.. ( 2003; ). Characterization and identification of Tage4 as the murine orthologue of human poliovirus receptor/CD155. . Biochem Biophys Res Commun 312:, 1364–1371. [CrossRef] [PubMed]
    [Google Scholar]
  39. Ren R. B., Costantini F., Gorgacz E. J., Lee J. J., Racaniello V. R.. ( 1990; ). Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. . Cell 63:, 353–362. [CrossRef] [PubMed]
    [Google Scholar]
  40. Sabin A. B.. ( 1956; ). Pathogenesis of poliomyelitis; reappraisal in the light of new data. . Science 123:, 1151–1157. [CrossRef] [PubMed]
    [Google Scholar]
  41. Siciński P., Rowiński J., Warchoł J. B., Jarzabek Z., Gut W., Szczygieł B., Bielecki K., Koch G.. ( 1990; ). Poliovirus type 1 enters the human host through intestinal M cells. . Gastroenterology 98:, 56–58.[PubMed]
    [Google Scholar]
  42. Sigel M. M.. ( 1952; ). Influence of age on susceptibility to virus infections with particular reference to laboratory animals. . Annu Rev Microbiol 6:, 247–280. [CrossRef] [PubMed]
    [Google Scholar]
  43. Wahid R., Cannon M. J., Chow M.. ( 2005; ). Dendritic cells and macrophages are productively infected by poliovirus. . J Virol 79:, 401–409. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wimmer E., Harber J. J., Bibb J. A., Gromeier M., Lu H.-H., Bernhardt G.. ( 1994; ). Poliovirus receptors. . In Cellular Receptors for Animal Viruses, pp. 101–127. Edited by Wimmer E... Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  45. Yanagiya A., Ohka S., Hashida N., Okamura M., Taya C., Kamoshita N., Iwasaki K., Sasaki Y., Yonekawa H., Nomoto A.. ( 2003; ). Tissue-specific replicating capacity of a chimeric poliovirus that carries the internal ribosome entry site of hepatitis C virus in a new mouse model transgenic for the human poliovirus receptor. . J Virol 77:, 10479–10487. [CrossRef] [PubMed]
    [Google Scholar]
  46. Zhang S., Racaniello V. R.. ( 1997; ). Expression of the poliovirus receptor in intestinal epithelial cells is not sufficient to permit poliovirus replication in the mouse gut. . J Virol 71:, 4915–4920.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.064535-0
Loading
/content/journal/jgv/10.1099/vir.0.064535-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error