1887

Abstract

Tick-borne encephalitis virus (TBEV) is a major arbovirus that causes thousands of cases of severe neurological illness in humans annually. However, virulence factors and pathological mechanisms of TBEV remain largely unknown. To identify the virulence factors, we constructed chimeric viruses between two TBEV strains of the Far-Eastern subtype, Sofjin-HO (highly pathogenic) and Oshima 5-10 (low pathogenic). The replacement of the coding region for the structural and non-structural proteins from Sofjin into Oshima showed a partial increase of the viral pathogenicity in a mouse model. Oshima-based chimeric viruses with the variable region of the 3′ UTR of Sofjin, which had a deletion of 207 nt, killed 100 % of mice and showed almost the same virulence as Sofjin. Replacement of the variable region of the 3′ UTR from Sofjin into Oshima did not increase viral multiplication in cultured cells and a mouse model at the early phase of viral entry into the brain. At the terminal phase of viral infection in mice, the virus titre of the Oshima-based chimeric virus with the variable region of the 3′ UTR of Sofjin reached a level identical to that of Sofjin and showed a similar histopathological change in the brain tissue. This is the first report to show that the variable region of the 3′ UTR is a critical virulence factor in mice. These findings encourage further study to understand the mechanisms of the pathogenicity of TBEV, and to develop preventative and therapeutic strategies for tick-borne encephalitis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.060046-0
2014-04-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/4/823.html?itemId=/content/journal/jgv/10.1099/vir.0.060046-0&mimeType=html&fmt=ahah

References

  1. Barkhash A. V., Perelygin A. A., Babenko V. N., Myasnikova N. G., Pilipenko P. I., Romaschenko A. G., Voevoda M. I., Brinton M. A.. ( 2010; ). Variability in the 2′–5′-oligoadenylate synthetase gene cluster is associated with human predisposition to tick-borne encephalitis virus-induced disease. . J Infect Dis 202:, 1813–1818. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bazan J. F., Fletterick R. J.. ( 1989; ). Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. . Virology 171:, 637–639. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bredenbeek P. J., Kooi E. A., Lindenbach B., Huijikman N., Rive C. M., Spaam W. J.. ( 2003; ). A stable full-lemgth yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. . J Gen Virol 84:, 1261–1268. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chambers T. J., Weir R. C., Grakoui A., McCourt D. W., Bazan J. F., Fletterick R. J., Rice C. M.. ( 1990; ). Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. . Proc Natl Acad Sci U S A 87:, 8898–8902. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chiba N., Osada M., Komoro K., Mizutani T., Kariwa H., Takashima I.. ( 1999; ). Protection against tick-borne encephalitis virus isolated in Japan by active and passive immunization. . Vaccine 17:, 1532–1539. [CrossRef] [PubMed]
    [Google Scholar]
  6. Dumpis U., Crook D., Oksi J.. ( 1999; ). Tick-borne encephalitis. . Clin Infect Dis 28:, 882–890. [CrossRef] [PubMed]
    [Google Scholar]
  7. Ecker M., Allison S. L., Meixner T., Heinz F. X.. ( 1999; ). Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. . J Gen Virol 80:, 179–185.[PubMed]
    [Google Scholar]
  8. Egloff M. P., Benarroch D., Selisko B., Romette J. L., Canard B.. ( 2002; ). An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. . EMBO J 21:, 2757–2768. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fischl W., Elshuber S., Schrauf S., Mandl C. W.. ( 2008; ). Changing the protease specificity for activation of a flavivirus, tick-borne encephalitis virus. . J Virol 82:, 8272–8282. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gorbalenya A. E., Donchenko A. P., Koonin E. V., Blinov V. M.. ( 1989; ). N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. . Nucleic Acids Res 17:, 3889–3897. [CrossRef] [PubMed]
    [Google Scholar]
  11. Goto A., Hayasaka D., Yoshii K., Mizutani T., Kariwa H., Takashima I.. ( 2002; ). Genetic and biological comparison of tick-borne encephalitis viruses from Hokkaido and far-eastern Russia. . Jpn J Vet Res 49:, 297–307.[PubMed]
    [Google Scholar]
  12. Goto A., Hayasaka D., Yoshii K., Mizutani T., Kariwa H., Takashima I.. ( 2003; ). A BHK-21 cell culture-adapted tick-borne encephalitis virus mutant is attenuated for neuroinvasiveness. . Vaccine 21:, 4043–4051. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gritsun T. S., Gould E. A.. ( 1995; ). Infectious transcripts of tick-borne encephalitis virus, generated in days by RT-PCR. . Virology 214:, 611–618. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gritsun T. S., Venugopal K., Zanotto P. M., Mikhailov M. V., Sall A. A., Holmes E. C., Polkinghorne I., Frolova T. V., Pogodina V. V.. & other authors ( 1997; ). Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the 5′ and 3′-UTRs. . Virus Res 49:, 27–39. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gritsun T. S., Lashkevich V. A., Gould E. A.. ( 2003; ). Tick-borne encephalitis. . Antiviral Res 57:, 129–146. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hayasaka D., Gritsun T. S., Yoshii K., Ueki T., Goto A., Mizutani T., Kariwa H., Iwasaki T., Gould E. A., Takashima I.. ( 2004a; ). Amino acid changes responsible for attenuation of virus neurovirulence in an infectious cDNA clone of the Oshima strain of tick-borne encephalitis virus. . J Gen Virol 85:, 1007–1018. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hayasaka D., Yoshii K., Ueki T., Iwasaki T., Takashima I.. ( 2004b; ). Sub-genomic replicons of Tick-borne encephalitis virus. . Arch Virol 149:, 1245–1256. [CrossRef] [PubMed]
    [Google Scholar]
  18. Heinz F. X., Allison S. L.. ( 2003; ). Flavivirus structure and membrane fusion. . Adv Virus Res 59:, 63–97.[PubMed]
    [Google Scholar]
  19. Khromykh A. A., Meka H., Guyatt K. J., Westaway E. G.. ( 2001; ). Essential role of cyclization sequences in flavivirus RNA replication. . J Virol 75:, 6719–6728. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kofler R. M., Heinz F. X., Mandl C. W.. ( 2002; ). Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence. . J Virol 76:, 3534–3543. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kofler R. M., Leitner A., O’Riordain G., Heinz F. X., Mandl C. W.. ( 2003; ). Spontaneous mutations restore the viability of tick-borne encephalitis virus mutants with large deletions in protein C. . J Virol 77:, 443–451. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kofler R. M., Hoenninger V. M., Thurner C., Mandl C. W.. ( 2006; ). Functional analysis of the tick-borne encephalitis virus cyclization elements indicates major differences between mosquito-borne and tick-borne flaviviruses. . J Virol 80:, 4099–4113. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kopecký J., Grubhoffer L., Kovár V., Jindrák L., Vokurková D.. ( 1999; ). A putative host cell receptor for tick-borne encephalitis virus identified by anti-idiotypic antibodies and virus affinoblotting. . Intervirology 42:, 9–16. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kozlovskaya L. I., Osolodkin D. I., Shevtsova A. S., Romanova L. Iu., Rogova Y. V., Dzhivanian T. I., Lyapustin V. N., Pivanova G. P., Gmyl A. P.. & other authors ( 2010; ). GAG-binding variants of tick-borne encephalitis virus. . Virology 398:, 262–272. [CrossRef] [PubMed]
    [Google Scholar]
  25. Leonova G. N., Belikov S. I., Kondratov I. G., Takashima I.. ( 2013; ). Comprehensive assessment of the genetics and virulence of tick-borne encephalitis virus strains isolated from patients with inapparent and clinical forms of the infection in the Russian Far East. . Virology 443:, 89–98. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lescar J., Luo D., Xu T., Sampath A., Lim S. P., Canard B., Vasudevan S. G.. ( 2008; ). Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target. . Antiviral Res 80:, 94–101. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lindquist L., Vapalahti O.. ( 2008; ). Tick-borne encephalitis. . Lancet 371:, 1861–1871. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lobigs M., Müllbacher A.. ( 1993; ). Recognition of vaccinia virus-encoded major histocompatibility complex class I antigens by virus immune cytotoxic T cells is independent of the polymorphism of the peptide transporters. . Proc Natl Acad Sci U S A 90:, 2676–2680. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mandl C. W.. ( 2005; ). Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis. . Virus Res 111:, 161–174. [CrossRef] [PubMed]
    [Google Scholar]
  30. Mandl C. W., Ecker M., Holzmann H., Kunz C., Heinz F. X.. ( 1997; ). Infectious cDNA clones of tick-borne encephalitis virus European subtype prototypic strain Neudoerfl and high virulence strain Hypr. . J Gen Virol 78:, 1049–1057.[PubMed]
    [Google Scholar]
  31. Mandl C. W., Holzmann H., Meixner T., Rauscher S., Stadler P. F., Allison S. L., Heinz F. X.. ( 1998; ). Spontaneous and engineered deletions in the 3′ noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus. . J Virol 72:, 2132–2140.[PubMed]
    [Google Scholar]
  32. Mandl C. W., Kroschewski H., Allison S. L., Kofler R., Holzmann H., Meixner T., Heinz F. X.. ( 2001; ). Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. . J Virol 75:, 5627–5637. [CrossRef] [PubMed]
    [Google Scholar]
  33. Mansfield K. L., Johnson N., Phipps L. P., Stephenson J. R., Fooks A. R., Solomon T.. ( 2009; ). Tick-borne encephalitis virus – a review of an emerging zoonosis. . J Gen Virol 90:, 1781–1794. [CrossRef] [PubMed]
    [Google Scholar]
  34. Matusan A. E., Pryor M. J., Davidson A. D., Wright P. J.. ( 2001; ). Mutagenesis of the Dengue virus type 2 NS3 protein within and outside helicase motifs: effects on enzyme activity and virus replication. . J Virol 75:, 9633–9643. [CrossRef] [PubMed]
    [Google Scholar]
  35. Navarro-Sanchez E., Altmeyer R., Amara A., Schwartz O., Fieschi F., Virelizier J. L., Arenzana-Seisdedos F., Desprès P.. ( 2003; ). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. . EMBO Rep 4:, 723–728. [CrossRef] [PubMed]
    [Google Scholar]
  36. Park G. S., Morris K. L., Hallett R. G., Bloom M. E., Best S. M.. ( 2007; ). Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the RNA-dependent RNA polymerase domain. . J Virol 81:, 6936–6946. [CrossRef] [PubMed]
    [Google Scholar]
  37. Pijlman G. P., Funk A., Kondratieva N., Leung J., Torres S., van der Aa L., Liu W. J., Palmenberg A. C., Shi P. Y.. & other authors ( 2008; ). A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. . Cell Host Microbe 4:, 579–591. [CrossRef] [PubMed]
    [Google Scholar]
  38. Potapova U. V., Feranchuk S. I., Potapov V. V., Kulakova N. V., Kondratov I. G., Leonova G. N., Belikov S. I.. ( 2012; ). NS2B/NS3 protease: allosteric effect of mutations associated with the pathogenicity of tick-borne encephalitis virus. . J Biomol Struct Dyn 30:, 638–651. [CrossRef] [PubMed]
    [Google Scholar]
  39. Puri B., Polo S., Hayes C. G., Falgout B.. ( 2000; ). Construction of a full length infectious clone for dengue-1 virus Western Pacific, 74 strain. . Virus Genes 20:, 57–63. [CrossRef] [PubMed]
    [Google Scholar]
  40. Rumyantsev A. A., Murphy B. R., Pletnev A. G.. ( 2006; ). A tick-borne Langat virus mutant that is temperature sensitive and host range restricted in neuroblastoma cells and lacks neuroinvasiveness for immunodeficient mice. . J Virol 80:, 1427–1439. [CrossRef] [PubMed]
    [Google Scholar]
  41. Růžek D., Gritsun T. S., Forrester N. L., Gould E. A., Kopecký J., Golovchenko M., Rudenko N., Grubhoffer L.. ( 2008; ). Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. . Virology 374:, 249–255. [CrossRef] [PubMed]
    [Google Scholar]
  42. Schnettler E., Sterken M. G., Leung J. Y., Metz S. W., Geertsema C., Goldbach R. W., Vlak J. M., Kohl A., Khromykh A. A., Pijlman G. P.. ( 2012; ). Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and mammalian cells. . J Virol 86:, 13486–13500. [CrossRef] [PubMed]
    [Google Scholar]
  43. Shi P. Y., Tilgner M., Lo M. K., Kent K. A., Bernard K. A.. ( 2002; ). Infectious cDNA clone of the epidemic West Nile virus from New York City. . J Virol 76:, 5847–5856. [CrossRef] [PubMed]
    [Google Scholar]
  44. Sunden Y., Yano S., Ishida S., Ochiai K., Umemura T.. ( 2010; ). Intracerebral vaccination suppresses the spread of rabies virus in the mouse brain. . Microbes Infect 12:, 1163–1169. [CrossRef] [PubMed]
    [Google Scholar]
  45. Takano A., Yoshii K., Omori-Urabe Y., Yokozawa K., Kariwa H., Takashima I.. ( 2011; ). Construction of a replicon and an infectious cDNA clone of the Sofjin strain of the Far-Eastern subtype of tick-borne encephalitis virus. . Arch Virol 156:, 1931–1941. [CrossRef] [PubMed]
    [Google Scholar]
  46. Wallner G., Mandl C. W., Kunz C., Heinz F. X.. ( 1995; ). The flavivirus 3′-noncoding region: extensive size heterogeneity independent of evolutionary relationships among strains of tick-borne encephalitis virus. . Virology 213:, 169–178. [CrossRef] [PubMed]
    [Google Scholar]
  47. Yoshii K., Konno A., Goto A., Nio J., Obara M., Ueki T., Hayasaka D., Mizutani T., Kariwa H., Takashima I.. ( 2004; ). Single point mutation in tick-borne encephalitis virus prM protein induces a reduction of virus particle secretion. . J Gen Virol 85:, 3049–3058. [CrossRef] [PubMed]
    [Google Scholar]
  48. Yoshii K., Igarashi M., Ito K., Kariwa H., Holbrook M. R., Takashima I.. ( 2011; ). Construction of an infectious cDNA clone for Omsk hemorrhagic fever virus, and characterization of mutations in NS2A and NS5. . Virus Res 155:, 61–68. [CrossRef] [PubMed]
    [Google Scholar]
  49. Yun S. I., Kim S. Y., Rice C. M., Lee Y. M.. ( 2003; ). Development and application of a reverse genetics system for Japanese encephalitis virus. . J Virol 77:, 6450–6465. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.060046-0
Loading
/content/journal/jgv/10.1099/vir.0.060046-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error