1887

Abstract

The development of drugs against human immunodeficiency virus type 1 infection has been highly successful, and numerous combinational treatments are currently available. However, the risk of the emergence of resistance and the toxic effects associated with prolonged use of antiretroviral therapies have emphasized the need to consider alternative approaches. One possible area of investigation is provided by the properties of restriction factors, cellular proteins that protect organisms against retroviral infection. Many show potent viral inhibition. Here, we describe the discovery, properties and possible therapeutic uses of the group of restriction factors known to interact with the capsid core of incoming retroviruses. This group comprises Fv1, TRIM5α and TRIMCypA: proteins that all act shortly after virus entry into the target cell and block virus replication at different stages prior to integration of viral DNA into the host chromosome. They have different origins and specificities, but share general structural features required for restriction, with an N-terminal multimerization domain and a C-terminal capsid-binding domain. Their overall efficacy makes it reasonable to ask whether they might provide a framework for developing novel antiretroviral strategies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.058180-0
2013-12-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/12/2587.html?itemId=/content/journal/jgv/10.1099/vir.0.058180-0&mimeType=html&fmt=ahah

References

  1. Allers K., Hütter G., Hofmann J., Loddenkemper C., Rieger K., Thiel E., Schneider T.. ( 2011;). Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. . Blood 117:, 2791–2799. [CrossRef][PubMed]
    [Google Scholar]
  2. Anderson J. L., Campbell E. M., Wu X., Vandegraaff N., Engelman A., Hope T. J.. ( 2006;). Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins. . J Virol 80:, 9754–9760. [CrossRef][PubMed]
    [Google Scholar]
  3. Balasubramaniam M., Freed E. O.. ( 2011;). New insights into HIV assembly and trafficking. . Physiology (Bethesda) 26:, 236–251. [CrossRef][PubMed]
    [Google Scholar]
  4. Bénit L., De Parseval N., Casella J.-F., Callebaut I., Cordonnier A., Heidmann T.. ( 1997;). Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene. . J Virol 71:, 5652–5657.[PubMed]
    [Google Scholar]
  5. Besnier C., Takeuchi Y., Towers G.. ( 2002;). Restriction of lentivirus in monkeys. . Proc Natl Acad Sci U S A 99:, 11920–11925. [CrossRef][PubMed]
    [Google Scholar]
  6. Best S., Le Tissier P., Towers G., Stoye J. P.. ( 1996;). Positional cloning of the mouse retrovirus restriction gene Fv1. . Nature 382:, 826–829. [CrossRef][PubMed]
    [Google Scholar]
  7. Biris N., Yang Y., Taylor A. B., Tomashevski A., Guo M., Hart P. J., Diaz-Griffero F., Ivanov D. N.. ( 2012;). Structure of the rhesus monkey TRIM5α PRYSPRY domain, the HIV capsid recognition module. . Proc Natl Acad Sci U S A 109:, 13278–13283. [CrossRef][PubMed]
    [Google Scholar]
  8. Bishop K. N., Bock M., Towers G., Stoye J. P.. ( 2001;). Identification of the regions of Fv1 necessary for murine leukemia virus restriction. . J Virol 75:, 5182–5188. [CrossRef][PubMed]
    [Google Scholar]
  9. Bishop K. N., Mortuza G. B., Howell S., Yap M. W., Stoye J. P., Taylor I. A.. ( 2006;). Characterization of an amino-terminal dimerization domain from retroviral restriction factor Fv1. . J Virol 80:, 8225–8235. [CrossRef][PubMed]
    [Google Scholar]
  10. Black L. R., Aiken C.. ( 2010;). TRIM5α disrupts the structure of assembled HIV-1 capsid complexes in vitro. . J Virol 84:, 6564–6569. [CrossRef][PubMed]
    [Google Scholar]
  11. Blair W. S., Pickford C., Irving S. L., Brown D. G., Anderson M., Bazin R., Cao J., Ciaramella G., Isaacson J.. & other authors ( 2010;). HIV capsid is a tractable target for small molecule therapeutic intervention. . PLoS Pathog 6:, e1001220. [CrossRef][PubMed]
    [Google Scholar]
  12. Boudinot P., van der Aa L. M., Jouneau L., Du Pasquier L., Pontarotti P., Briolat V., Benmansour A., Levraud J. P.. ( 2011;). Origin and evolution of TRIM proteins: new insights from the complete TRIM repertoire of zebrafish and pufferfish. . PLoS ONE 6:, e22022. [CrossRef][PubMed]
    [Google Scholar]
  13. Boutimah F., Eekels J. J., Liu Y. P., Berkhout B.. ( 2013;). Antiviral strategies combining antiretroviral drugs with RNAi-mediated attack on HIV-1 and cellular co-factors. . Antiviral Res 98:, 121–129. [CrossRef][PubMed]
    [Google Scholar]
  14. Brennan G., Kozyrev Y., Hu S. L.. ( 2008;). TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. . Proc Natl Acad Sci U S A 105:, 3569–3574. [CrossRef][PubMed]
    [Google Scholar]
  15. Caines M. E., Bichel K., Price A. J., McEwan W. A., Towers G. J., Willett B. J., Freund S. M., James L. C.. ( 2012;). Diverse HIV viruses are targeted by a conformationally dynamic antiviral. . Nat Struct Mol Biol 19:, 411–416. [CrossRef][PubMed]
    [Google Scholar]
  16. Campbell E. M., Perez O., Anderson J. L., Hope T. J.. ( 2008;). Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α. . J Cell Biol 180:, 549–561. [CrossRef][PubMed]
    [Google Scholar]
  17. Chan E., Schaller T., Eddaoudi A., Zhan H., Tan C. P., Jacobsen M., Thrasher A. J., Towers G. J., Qasim W.. ( 2012;). Lentiviral gene therapy against human immunodeficiency virus type 1, using a novel human TRIM21-cyclophilin A restriction factor. . Hum Gene Ther 23:, 1176–1185. [CrossRef][PubMed]
    [Google Scholar]
  18. Cohen M. S., Baden L. R.. ( 2012;). Preexposure prophylaxis for HIV – where do we go from here?. N Engl J Med 367:, 459–461. [CrossRef][PubMed]
    [Google Scholar]
  19. Cowan S., Hatziioannou T., Cunningham T., Muesing M. A., Gottlinger H. G., Bieniasz P. D.. ( 2002;). Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. . Proc Natl Acad Sci U S A 99:, 11914–11919. [CrossRef][PubMed]
    [Google Scholar]
  20. Diaz-Griffero F., Li X., Javanbakht H., Song B., Welikala S., Stremlau M., Sodroski J.. ( 2006;). Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. . Virology 349:, 300–315. [CrossRef][PubMed]
    [Google Scholar]
  21. Diaz-Griffero F., Qin X. R., Hayashi F., Kigawa T., Finzi A., Sarnak Z., Lienlaf M., Yokoyama S., Sodroski J.. ( 2009;). A B-box 2 surface patch important for TRIM5α self-association, capsid binding avidity, and retrovirus restriction. . J Virol 83:, 10737–10751. [CrossRef][PubMed]
    [Google Scholar]
  22. Dismuke D. J., Aiken C.. ( 2006;). Evidence for a functional link between uncoating of the human immunodeficiency virus type 1 core and nuclear import of the viral preintegration complex. . J Virol 80:, 3712–3720. [CrossRef][PubMed]
    [Google Scholar]
  23. Dodding M. P., Bock M., Yap M. W., Stoye J. P.. ( 2005;). Capsid processing requirements for abrogation of Fv1 and Ref1 restriction. . J Virol 79:, 10571–10577. [CrossRef][PubMed]
    [Google Scholar]
  24. Duran-Troise G., Bassin R. H., Rein A., Gerwin B. I.. ( 1977;). Loss of Fv-1 restriction in Balb/3T3 cells following infection with a single N tropic murine leukemia virus particle. . Cell 10:, 479–488. [CrossRef][PubMed]
    [Google Scholar]
  25. Fassati A.. ( 2012;). Multiple roles of the capsid protein in the early steps of HIV-1 infection. . Virus Res 170:, 15–24. [CrossRef][PubMed]
    [Google Scholar]
  26. FDA( 2013;). US Food and Drug Administration: Antiretroviral drugs used in the treatment of HIV infection. . http://www.fda.gov/ForConsumers/byAudience/ForPatientAdvocates/HIVandAIDSActivities/ucm118915.htm.
  27. Forshey B. M., von Schwedler U., Sundquist W. I., Aiken C.. ( 2002;). Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. . J Virol 76:, 5667–5677. [CrossRef][PubMed]
    [Google Scholar]
  28. Forshey B. M., Shi J., Aiken C.. ( 2005;). Structural requirements for recognition of the human immunodeficiency virus type 1 core during host restriction in owl monkey cells. . J Virol 79:, 869–875. [CrossRef][PubMed]
    [Google Scholar]
  29. Franke E. K., Yuan H. E., Luban J.. ( 1994;). Specific incorporation of cyclophilin A into HIV-1 virions. . Nature 372:, 359–362. [CrossRef][PubMed]
    [Google Scholar]
  30. Gamble T. R., Vajdos F. F., Yoo S., Worthylake D. K., Houseweart M., Sundquist W. I., Hill C. P.. ( 1996;). Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. . Cell 87:, 1285–1294. [CrossRef][PubMed]
    [Google Scholar]
  31. Ganser-Pornillos B. K., Cheng A., Yeager M.. ( 2007;). Structure of full-length HIV-1 CA: a model for the mature capsid lattice. . Cell 131:, 70–79. [CrossRef][PubMed]
    [Google Scholar]
  32. Ganser-Pornillos B. K., Chandrasekaran V., Pornillos O., Sodroski J. G., Sundquist W. I., Yeager M.. ( 2011;). Hexagonal assembly of a restricting TRIM5α protein. . Proc Natl Acad Sci U S A 108:, 534–539. [CrossRef][PubMed]
    [Google Scholar]
  33. Goff S. P.. ( 2001;). Retroviridae: the retroviruses and their replication. . In Fields Virology, , 4th edn., pp. 1871–1939. Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E... Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  34. Goldschmidt V., Ciuffi A., Ortiz M., Brawand D., Muñoz M., Kaessmann H., Telenti A.. ( 2008;). Antiretroviral activity of ancestral TRIM5α. . J Virol 82:, 2089–2096. [CrossRef][PubMed]
    [Google Scholar]
  35. Goldstone D. C., Yap M. W., Robertson L. E., Haire L. F., Taylor W. R., Katzourakis A., Stoye J. P., Taylor I. A.. ( 2010;). Structural and functional analysis of prehistoric lentiviruses uncovers an ancient molecular interface. . Cell Host Microbe 8:, 248–259. [CrossRef][PubMed]
    [Google Scholar]
  36. Goldstone D. C., Flower T. G., Ball N. J., Sanz-Ramos M., Yap M. W., Ogrodowicz R. W., Stanke N., Reh J., Lindemann D.. & other authors ( 2013;). A unique spumavirus Gag N-terminal domain with functional properties of orthoretroviral matrix and capsid. . PLoS Pathog 9:, e1003376. [CrossRef][PubMed]
    [Google Scholar]
  37. Haran-Ghera N., Peled A., Brightman B. K., Fan H.. ( 1993;). Lymphomagenesis in AKR.Fv-1b congenic mice. . Cancer Res 53:, 3433–3438.[PubMed]
    [Google Scholar]
  38. Harris R. S., Hultquist J. F., Evans D. T.. ( 2012;). The restriction factors of human immunodeficiency virus. . J Biol Chem 287:, 40875–40883. [CrossRef][PubMed]
    [Google Scholar]
  39. Hatziioannou T., Cowan S., Goff S. P., Bieniasz P. D., Towers G. J.. ( 2003;). Restriction of multiple divergent retroviruses by Lv1 and Ref1. . EMBO J 22:, 385–394. [CrossRef][PubMed]
    [Google Scholar]
  40. Hatziioannou T., Cowan S., Von Schwedler U. K., Sundquist W. I., Bieniasz P. D.. ( 2004a;). Species-specific tropism determinants in the human immunodeficiency virus type 1 capsid. . J Virol 78:, 6005–6012. [CrossRef][PubMed]
    [Google Scholar]
  41. Hatziioannou T., Perez-Caballero D., Yang A., Cowan S., Bieniasz P. D.. ( 2004b;). Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5α. . Proc Natl Acad Sci U S A 101:, 10774–10779. [CrossRef][PubMed]
    [Google Scholar]
  42. Hilditch L., Matadeen R., Goldstone D. C., Rosenthal P. B., Taylor I. A., Stoye J. P.. ( 2011;). Ordered assembly of murine leukemia virus capsid protein on lipid nanotubes directs specific binding by the restriction factor, Fv1. . Proc Natl Acad Sci U S A 108:, 5771–5776. [CrossRef][PubMed]
    [Google Scholar]
  43. Hofmann W., Schubert D., LaBonte J., Munson L., Gibson S., Scammell J., Ferrigno P., Sodroski J.. ( 1999;). Species-specific, postentry barriers to primate immunodeficiency virus infection. . J Virol 73:, 10020–10028.[PubMed]
    [Google Scholar]
  44. Hopkins N., Schindler J., Hynes R.. ( 1977;). Six NB-tropic murine leukemia viruses derived from a B-tropic virus of BALB/c have altered p30. . J Virol 21:, 309–318.[PubMed]
    [Google Scholar]
  45. Javanbakht H., Diaz-Griffero F., Stremlau M., Si Z., Sodroski J.. ( 2005;). The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5α. . J Biol Chem 280:, 26933–26940. [CrossRef][PubMed]
    [Google Scholar]
  46. Javanbakht H., Yuan W., Yeung D. F., Song B., Diaz-Griffero F., Li Y., Li X., Stremlau M., Sodroski J.. ( 2006a;). Characterization of TRIM5α trimerization and its contribution to human immunodeficiency virus capsid binding. . Virology 353:, 234–246. [CrossRef][PubMed]
    [Google Scholar]
  47. Javanbakht H., An P., Gold B., Petersen D. C., O’Huigin C., Nelson G. W., O’Brien S. J., Kirk G. D., Detels R.. & other authors ( 2006b;). Effects of human TRIM5α polymorphisms on antiretroviral function and susceptibility to human immunodeficiency virus infection. . Virology 354:, 15–27. [CrossRef][PubMed]
    [Google Scholar]
  48. Johnson W. E., Sawyer S. L.. ( 2009;). Molecular evolution of the antiretroviral TRIM5 gene. . Immunogenetics 61:, 163–176. [CrossRef][PubMed]
    [Google Scholar]
  49. Jolicoeur P., Baltimore D.. ( 1976;). Effect of Fv-1 gene product on proviral DNA formation and integration in cells infected with murine leukemia viruses. . Proc Natl Acad Sci U S A 73:, 2236–2240. [CrossRef][PubMed]
    [Google Scholar]
  50. Jolicoeur P., Rassart E.. ( 1980;). Effect of Fv-1 gene product on synthesis of linear and supercoiled viral DNA in cells infected with murine leukemia virus. . J Virol 33:, 183–195.[PubMed]
    [Google Scholar]
  51. Jung Y. T., Kozak C. A.. ( 2000;). A single amino acid change in the murine leukemia virus capsid gene responsible for the Fv1nr phenotype. . J Virol 74:, 5385–5387. [CrossRef][PubMed]
    [Google Scholar]
  52. Keckesova Z., Ylinen L. M., Towers G. J.. ( 2004;). The human and African green monkey TRIM5α genes encode Ref1 and Lv1 retroviral restriction factor activities. . Proc Natl Acad Sci U S A 101:, 10780–10785. [CrossRef][PubMed]
    [Google Scholar]
  53. Kirmaier A., Wu F., Newman R. M., Hall L. R., Morgan J. S., O’Connor S., Marx P. A., Meythaler M., Goldstein S.. & other authors ( 2010;). TRIM5 suppresses cross-species transmission of a primate immunodeficiency virus and selects for emergence of resistant variants in the new species. . PLoS Biol 8:, e1000462. [CrossRef][PubMed]
    [Google Scholar]
  54. Kono K., Song H., Yokoyama M., Sato H., Shioda T., Nakayama E. E.. ( 2010;). Multiple sites in the N-terminal half of simian immunodeficiency virus capsid protein contribute to evasion from rhesus monkey TRIM5α-mediated restriction. . Retrovirology 7:, 72. [CrossRef][PubMed]
    [Google Scholar]
  55. Kozak C. A., Chakraborti A.. ( 1996;). Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. . Virology 225:, 300–305. [CrossRef][PubMed]
    [Google Scholar]
  56. Kuroishi A., Bozek K., Shioda T., Nakayama E. E.. ( 2010;). A single amino acid substitution of the human immunodeficiency virus type 1 capsid protein affects viral sensitivity to TRIM5α. . Retrovirology 7:, 58. [CrossRef][PubMed]
    [Google Scholar]
  57. Kutluay S. B., Perez-Caballero D., Bieniasz P. D.. ( 2013;). Fates of retroviral core components during unrestricted and TRIM5-restricted infection. . PLoS Pathog 9:, e1003214. [CrossRef][PubMed]
    [Google Scholar]
  58. Langelier C. R., Sandrin V., Eckert D. M., Christensen D. E., Chandrasekaran V., Alam S. L., Aiken C., Olsen J. C., Kar A. K.. & other authors ( 2008;). Biochemical characterization of a recombinant TRIM5α protein that restricts HIV-1 replication. . J Virol 82:, 11682–11694. [CrossRef][PubMed]
    [Google Scholar]
  59. Lee K., Ambrose Z., Martin T. D., Oztop I., Mulky A., Julias J. G., Vandegraaff N., Baumann J. G., Wang R.. & other authors ( 2010;). Flexible use of nuclear import pathways by HIV-1. . Cell Host Microbe 7:, 221–233. [CrossRef][PubMed]
    [Google Scholar]
  60. Li X., Sodroski J.. ( 2008;). The TRIM5α B-box 2 domain promotes cooperative binding to the retroviral capsid by mediating higher-order self-association. . J Virol 82:, 11495–11502. [CrossRef][PubMed]
    [Google Scholar]
  61. Li Y., Li X., Stremlau M., Lee M., Sodroski J.. ( 2006;). Removal of arginine 332 allows human TRIM5α to bind human immunodeficiency virus capsids and to restrict infection. . J Virol 80:, 6738–6744. [CrossRef][PubMed]
    [Google Scholar]
  62. Li X., Song B., Xiang S. H., Sodroski J.. ( 2007;). Functional interplay between the B-box 2 and the B30.2(SPRY) domains of TRIM5α. . Virology 366:, 234–244. [CrossRef][PubMed]
    [Google Scholar]
  63. Li L., Krymskaya L., Wang J., Henley J., Rao A., Cao L. F., Tran C. A., Torres-Coronado M., Gardner A.. & other authors ( 2013a;). Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. . Mol Ther 21:, 1259–1269. [CrossRef][PubMed]
    [Google Scholar]
  64. Li X., Kim J., Song B., Finzi A., Pacheco B., Sodroski J.. ( 2013b;). Virus-specific effects of TRIM5αrh RING domain functions on restriction of retroviruses. . J Virol 87:, 7234–7245. [CrossRef][PubMed]
    [Google Scholar]
  65. Lilly F.. ( 1970;). Fv-2: identification and location of a second gene governing the spleen focus response to Friend leukemia virus in mice. . J Natl Cancer Inst 45:, 163–169.[PubMed]
    [Google Scholar]
  66. Lim S. Y., Rogers T., Chan T., Whitney J. B., Kim J., Sodroski J., Letvin N. L.. ( 2010;). TRIM5α modulates immunodeficiency virus control in rhesus monkeys. . PLoS Pathog 6:, e1000738. [CrossRef][PubMed]
    [Google Scholar]
  67. Luban J., Bossolt K. L., Franke E. K., Kalpana G. V., Goff S. P.. ( 1993;). Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. . Cell 73:, 1067–1078. [CrossRef][PubMed]
    [Google Scholar]
  68. Lukic Z., Hausmann S., Sebastian S., Rucci J., Sastri J., Robia S. L., Luban J., Campbell E. M.. ( 2011;). TRIM5α associates with proteasomal subunits in cells while in complex with HIV-1 virions. . Retrovirology 8:, 93. [CrossRef][PubMed]
    [Google Scholar]
  69. Malfavon-Borja R., Wu L. I., Emerman M., Malik H. S.. ( 2013;). Birth, decay, and reconstruction of an ancient TRIMCyp gene fusion in primate genomes. . Proc Natl Acad Sci U S A 110:, E583–E592. [CrossRef][PubMed]
    [Google Scholar]
  70. Malim M. H., Bieniasz P. D.. ( 2012;). HIV restriction factors and mechanisms of evasion. . Cold Spring Harb Perspect Med 2:, a006940. [CrossRef][PubMed]
    [Google Scholar]
  71. McCarthy K. R., Schmidt A. G., Kirmaier A., Wyand A. L., Newman R. M., Johnson W. E.. ( 2013;). Gain-of-sensitivity mutations in a Trim5-resistant primary isolate of pathogenic SIV identify two independent conserved determinants of Trim5α specificity. . PLoS Pathog 9:, e1003352. [CrossRef][PubMed]
    [Google Scholar]
  72. McDonald D., Vodicka M. A., Lucero G., Svitkina T. M., Borisy G. G., Emerman M., Hope T. J.. ( 2002;). Visualization of the intracellular behavior of HIV in living cells. . J Cell Biol 159:, 441–452. [CrossRef][PubMed]
    [Google Scholar]
  73. Meyerson N. R., Sawyer S. L.. ( 2011;). Two-stepping through time: mammals and viruses. . Trends Microbiol 19:, 286–294. [CrossRef][PubMed]
    [Google Scholar]
  74. Mische C. C., Javanbakht H., Song B., Diaz-Griffero F., Stremlau M., Strack B., Si Z., Sodroski J.. ( 2005;). Retroviral restriction factor TRIM5α is a trimer. . J Virol 79:, 14446–14450. [CrossRef][PubMed]
    [Google Scholar]
  75. Mortuza G. B., Haire L. F., Stevens A., Smerdon S. J., Stoye J. P., Taylor I. A.. ( 2004;). High-resolution structure of a retroviral capsid hexameric amino-terminal domain. . Nature 431:, 481–485. [CrossRef][PubMed]
    [Google Scholar]
  76. Mortuza G. B., Dodding M. P., Goldstone D. C., Haire L. F., Stoye J. P., Taylor I. A.. ( 2008;). Structure of B-MLV capsid amino-terminal domain reveals key features of viral tropism, gag assembly and core formation. . J Mol Biol 376:, 1493–1508. [CrossRef][PubMed]
    [Google Scholar]
  77. Münk C., Brandt S. M., Lucero G., Landau N. R.. ( 2002;). A dominant block to HIV-1 replication at reverse transcription in simian cells. . Proc Natl Acad Sci U S A 99:, 13843–13848. [CrossRef][PubMed]
    [Google Scholar]
  78. Neagu M. R., Ziegler P., Pertel T., Strambio-De-Castillia C., Grütter C., Martinetti G., Mazzucchelli L., Grütter M., Manz M. G., Luban J.. ( 2009;). Potent inhibition of HIV-1 by TRIM5–cyclophilin fusion proteins engineered from human components. . J Clin Invest 119:, 3035–3047. [CrossRef][PubMed]
    [Google Scholar]
  79. Newman R. M., Hall L., Connole M., Chen G. L., Sato S., Yuste E., Diehl W., Hunter E., Kaur A.. & other authors ( 2006;). Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5α. . Proc Natl Acad Sci U S A 103:, 19134–19139. [CrossRef][PubMed]
    [Google Scholar]
  80. Newman R. M., Hall L., Kirmaier A., Pozzi L. A., Pery E., Farzan M., O’Neil S. P., Johnson W.. ( 2008;). Evolution of a TRIM5–CypA splice isoform in old world monkeys. . PLoS Pathog 4:, e1000003. [CrossRef][PubMed]
    [Google Scholar]
  81. Nisole S., Lynch C., Stoye J. P., Yap M. W.. ( 2004;). A Trim5–cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. . Proc Natl Acad Sci U S A 101:, 13324–13328. [CrossRef][PubMed]
    [Google Scholar]
  82. Nisole S., Stoye J. P., Saïb A.. ( 2005;). TRIM family proteins: retroviral restriction and antiviral defence. . Nat Rev Microbiol 3:, 799–808. [CrossRef][PubMed]
    [Google Scholar]
  83. Nowinski R. C., Hays E. F.. ( 1978;). Oncogenicity of AKR endogenous leukemia viruses. . J Virol 27:, 13–18.[PubMed]
    [Google Scholar]
  84. Odaka T.. ( 1969;). Inheritance of susceptibility to Friend mouse leukemia virus. V. Introduction of a gene responsible for susceptibility in the genetic complement of resistant mice. . J Virol 3:, 543–548.[PubMed]
    [Google Scholar]
  85. Ohkura S., Stoye J. P.. ( 2013;). A comparison of murine leukemia viruses that escape from human and rhesus macaque TRIM5αs. . J Virol 87:, 6455–6468. [CrossRef][PubMed]
    [Google Scholar]
  86. Ohkura S., Yap M. W., Sheldon T., Stoye J. P.. ( 2006;). All three variable regions of the TRIM5α B30.2 domain can contribute to the specificity of retrovirus restriction. . J Virol 80:, 8554–8565. [CrossRef][PubMed]
    [Google Scholar]
  87. Ohkura S., Goldstone D. C., Yap M. W., Holden-Dye K., Taylor I. A., Stoye J. P.. ( 2011;). Novel escape mutants suggest an extensive TRIM5α binding site spanning the entire outer surface of the murine leukemia virus capsid protein. . PLoS Pathog 7:, e1002011. [CrossRef][PubMed]
    [Google Scholar]
  88. Onyango C. O., Leligdowicz A., Yokoyama M., Sato H., Song H., Nakayama E. E., Shioda T., de Silva T., Townend J.. & other authors ( 2010;). HIV-2 capsids distinguish high and low virus load patients in a West African community cohort. . Vaccine 28: (Suppl 2), B60–B67. [CrossRef][PubMed]
    [Google Scholar]
  89. Owens C. M., Yang P. C., Göttlinger H., Sodroski J.. ( 2003;). Human and simian immunodeficiency virus capsid proteins are major viral determinants of early, postentry replication blocks in simian cells. . J Virol 77:, 726–731. [CrossRef][PubMed]
    [Google Scholar]
  90. Owens C. M., Song B., Perron M. J., Yang P. C., Stremlau M., Sodroski J.. ( 2004;). Binding and susceptibility to postentry restriction factors in monkey cells are specified by distinct regions of the human immunodeficiency virus type 1 capsid. . J Virol 78:, 5423–5437. [CrossRef][PubMed]
    [Google Scholar]
  91. Perez-Caballero D., Hatziioannou T., Yang A., Cowan S., Bieniasz P. D.. ( 2005;). Human tripartite motif 5α domains responsible for retrovirus restriction activity and specificity. . J Virol 79:, 8969–8978. [CrossRef][PubMed]
    [Google Scholar]
  92. Perez-Caballero D., Soll S. J., Bieniasz P. D.. ( 2008;). Evidence for restriction of ancient primate gammaretroviruses by APOBEC3 but not TRIM5α proteins. . PLoS Pathog 4:, e1000181. [CrossRef][PubMed]
    [Google Scholar]
  93. Perron M. J., Stremlau M., Song B., Ulm W., Mulligan R. C., Sodroski J.. ( 2004;). TRIM5α mediates the postentry block to N-tropic murine leukemia viruses in human cells. . Proc Natl Acad Sci U S A 101:, 11827–11832. [CrossRef][PubMed]
    [Google Scholar]
  94. Perron M. J., Stremlau M., Lee M., Javanbakht H., Song B., Sodroski J.. ( 2007;). The human TRIM5α restriction factor mediates accelerated uncoating of the N-tropic murine leukemia virus capsid. . J Virol 81:, 2138–2148. [CrossRef][PubMed]
    [Google Scholar]
  95. Pertel T., Hausmann S., Morger D., Züger S., Guerra J., Lascano J., Reinhard C., Santoni F. A., Uchil P. D.. & other authors ( 2011;). TRIM5 is an innate immune sensor for the retrovirus capsid lattice. . Nature 472:, 361–365. [CrossRef][PubMed]
    [Google Scholar]
  96. Pincus T., Hartley J. W., Rowe W. P.. ( 1971;). A major genetic locus affecting resistance to infection with murine leukemia viruses. I. Tissue culture studies of naturally occurring viruses. . J Exp Med 133:, 1219–1233. [CrossRef][PubMed]
    [Google Scholar]
  97. Pincus T., Hartley J. W., Rowe W. P.. ( 1975;). A major genetic locus affecting resistance to infection with murine leukemia viruses. IV. Dose–response relationships in Fv-1-sensitive and resistant cell cultures. . Virology 65:, 333–342. [CrossRef][PubMed]
    [Google Scholar]
  98. Pryciak P. M., Varmus H. E.. ( 1992;). Fv-1 restriction and its effects on murine leukemia virus integration in vivo and in vitro. . J Virol 66:, 5959–5966.[PubMed]
    [Google Scholar]
  99. Rahm N., Yap M., Snoeck J., Zoete V., Muñoz M., Radespiel U., Zimmermann E., Michielin O., Stoye J. P.. & other authors ( 2011;). Unique spectrum of activity of prosimian TRIM5α against exogenous and endogenous retroviruses. . J Virol 85:, 4173–4183. [CrossRef][PubMed]
    [Google Scholar]
  100. Reymond A., Meroni G., Fantozzi A., Merla G., Cairo S., Luzi L., Riganelli D., Zanaria E., Messali S.. & other authors ( 2001;). The tripartite motif family identifies cell compartments. . EMBO J 20:, 2140–2151. [CrossRef][PubMed]
    [Google Scholar]
  101. Reynolds M. R., Sacha J. B., Weiler A. M., Borchardt G. J., Glidden C. E., Sheppard N. C., Norante F. A., Castrovinci P. A., Harris J. J.. & other authors ( 2011;). The TRIM5α genotype of rhesus macaques affects acquisition of simian immunodeficiency virus SIVsmE660 infection after repeated limiting-dose intrarectal challenge. . J Virol 85:, 9637–9640. [CrossRef][PubMed]
    [Google Scholar]
  102. Rihn S. J., Wilson S. J., Loman N. J., Alim M., Bakker S. E., Bhella D., Gifford R. J., Rixon F. J., Bieniasz P. D.. ( 2013;). Extreme genetic fragility of the HIV-1 capsid. . PLoS Pathog 9:, e1003461. [CrossRef][PubMed]
    [Google Scholar]
  103. Rold C. J., Aiken C.. ( 2008;). Proteasomal degradation of TRIM5α during retrovirus restriction. . PLoS Pathog 4:, e1000074. [CrossRef][PubMed]
    [Google Scholar]
  104. Rowe W. P.. ( 1972;). Studies of genetic transmission of murine leukemia virus by AKR mice. I. Crosses with Fv-1 n strains of mice. . J Exp Med 136:, 1272–1285. [CrossRef][PubMed]
    [Google Scholar]
  105. Rowe W. P., Hartley J. W.. ( 1972;). Studies of genetic transmission of murine leukemia virus by AKR mice. II. Crosses with Fv-1b strains of mice. . J Exp Med 136:, 1286–1301. [CrossRef][PubMed]
    [Google Scholar]
  106. Sastri J., O’Connor C., Danielson C. M., McRaven M., Perez P., Diaz-Griffero F., Campbell E. M.. ( 2010;). Identification of residues within the L2 region of rhesus TRIM5α that are required for retroviral restriction and cytoplasmic body localization. . Virology 405:, 259–266. [CrossRef][PubMed]
    [Google Scholar]
  107. Sawyer S. L., Wu L. I., Emerman M., Malik H. S.. ( 2005;). Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain. . Proc Natl Acad Sci U S A 102:, 2832–2837. [CrossRef][PubMed]
    [Google Scholar]
  108. Sawyer S. L., Wu L. I., Akey J. M., Emerman M., Malik H. S.. ( 2006;). High-frequency persistence of an impaired allele of the retroviral defense gene TRIM5α in humans. . Curr Biol 16:, 95–100. [CrossRef][PubMed]
    [Google Scholar]
  109. Sayah D. M., Sokolskaja E., Berthoux L., Luban J.. ( 2004;). Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. . Nature 430:, 569–573. [CrossRef][PubMed]
    [Google Scholar]
  110. Schaller T., Ocwieja K. E., Rasaiyaah J., Price A. J., Brady T. L., Roth S. L., Hué S., Fletcher A. J., Lee K.. & other authors ( 2011;). HIV-1 capsid–cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. . PLoS Pathog 7:, e1002439. [CrossRef][PubMed]
    [Google Scholar]
  111. Sewram S., Singh R., Kormuth E., Werner L., Mlisana K., Karim S. S., Ndung’u T..CAPRISA Acute Infection Study Team ( 2009;). Human TRIM5α expression levels and reduced susceptibility to HIV-1 infection. . J Infect Dis 199:, 1657–1663. [CrossRef][PubMed]
    [Google Scholar]
  112. Shibata R., Sakai H., Kawamura M., Tokunaga K., Adachi A.. ( 1995;). Early replication block of human immunodeficiency virus type 1 in monkey cells. . J Gen Virol 76:, 2723–2730. [CrossRef][PubMed]
    [Google Scholar]
  113. Short K. M., Cox T. C.. ( 2006;). Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. . J Biol Chem 281:, 8970–8980. [CrossRef][PubMed]
    [Google Scholar]
  114. Song B., Javanbakht H., Perron M., Park D. H., Stremlau M., Sodroski J.. ( 2005a;). Retrovirus restriction by TRIM5α variants from Old World and New World primates. . J Virol 79:, 3930–3937. [CrossRef][PubMed]
    [Google Scholar]
  115. Song B., Gold B., O’Huigin C., Javanbakht H., Li X., Stremlau M., Winkler C., Dean M., Sodroski J.. ( 2005b;). The B30.2(SPRY) domain of the retroviral restriction factor TRIM5α exhibits lineage-specific length and sequence variation in primates. . J Virol 79:, 6111–6121. [CrossRef][PubMed]
    [Google Scholar]
  116. Song H., Nakayama E. E., Yokoyama M., Sato H., Levy J. A., Shioda T.. ( 2007;). A single amino acid of the human immunodeficiency virus type 2 capsid affects its replication in the presence of cynomolgus monkey and human TRIM5αs. . J Virol 81:, 7280–7285. [CrossRef][PubMed]
    [Google Scholar]
  117. Stevens A., Bock M., Ellis S., LeTissier P., Bishop K. N., Yap M. W., Taylor W., Stoye J. P.. ( 2004;). Retroviral capsid determinants of Fv1 NB and NR tropism. . J Virol 78:, 9592–9598. [CrossRef][PubMed]
    [Google Scholar]
  118. Stoye J. P.. ( 2012;). Studies of endogenous retroviruses reveal a continuing evolutionary saga. . Nat Rev Microbiol 10:, 395–406.[PubMed]
    [Google Scholar]
  119. Stoye J. P., Kaushik N., Jeremiah S., Best S.. ( 1995;). Genetic map of the region surrounding the retrovirus restriction locus, Fv1, on mouse chromosome 4. . Mamm Genome 6:, 31–36. [CrossRef][PubMed]
    [Google Scholar]
  120. Stremlau M., Owens C. M., Perron M. J., Kiessling M., Autissier P., Sodroski J.. ( 2004;). The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. . Nature 427:, 848–853. [CrossRef][PubMed]
    [Google Scholar]
  121. Stremlau M., Perron M., Welikala S., Sodroski J.. ( 2005;). Species-specific variation in the B30.2(SPRY) domain of TRIM5α determines the potency of human immunodeficiency virus restriction. . J Virol 79:, 3139–3145. [CrossRef][PubMed]
    [Google Scholar]
  122. Stremlau M., Perron M., Lee M., Li Y., Song B., Javanbakht H., Diaz-Griffero F., Anderson D. J., Sundquist W. I., Sodroski J.. ( 2006;). Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor. . Proc Natl Acad Sci U S A 103:, 5514–5519. [CrossRef][PubMed]
    [Google Scholar]
  123. Towers G., Bock M., Martin S., Takeuchi Y., Stoye J. P., Danos O.. ( 2000;). A conserved mechanism of retrovirus restriction in mammals. . Proc Natl Acad Sci U S A 97:, 12295–12299. [CrossRef][PubMed]
    [Google Scholar]
  124. Towers G., Collins M., Takeuchi Y.. ( 2002;). Abrogation of Ref1 retrovirus restriction in human cells. . J Virol 76:, 2548–2550. [CrossRef][PubMed]
    [Google Scholar]
  125. van der Straten A., Van Damme L., Haberer J. E., Bangsberg D. R.. ( 2012;). Unraveling the divergent results of pre-exposure prophylaxis trials for HIV prevention. . AIDS 26:, F13–F19. [CrossRef][PubMed]
    [Google Scholar]
  126. van Manen D., Rits M. A., Beugeling C., van Dort K., Schuitemaker H., Kootstra N. A.. ( 2008;). The effect of Trim5 polymorphisms on the clinical course of HIV-1 infection. . PLoS Pathog 4:, e18. [CrossRef][PubMed]
    [Google Scholar]
  127. Versteeg G. A., Rajsbaum R., Sánchez-Aparicio M. T., Maestre A. M., Valdiviezo J., Shi M., Inn K. S., Fernandez-Sesma A., Jung J., García-Sastre A.. ( 2013;). The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. . Immunity 38:, 384–398. [CrossRef][PubMed]
    [Google Scholar]
  128. Virgen C. A., Kratovac Z., Bieniasz P. D., Hatziioannou T.. ( 2008;). Independent genesis of chimeric TRIM5–cyclophilin proteins in two primate species. . Proc Natl Acad Sci U S A 105:, 3563–3568. [CrossRef][PubMed]
    [Google Scholar]
  129. Voit R. A., McMahon M. A., Sawyer S. L., Porteus M. H.. ( 2013;). Generation of an HIV resistant T-cell line by targeted “stacking” of restriction factors. . Mol Ther 21:, 786–795. [CrossRef][PubMed]
    [Google Scholar]
  130. Wilson S. J., Webb B. L., Ylinen L. M., Verschoor E., Heeney J. L., Towers G. J.. ( 2008a;). Independent evolution of an antiviral TRIMCyp in rhesus macaques. . Proc Natl Acad Sci U S A 105:, 3557–3562. [CrossRef][PubMed]
    [Google Scholar]
  131. Wilson S. J., Webb B. L., Maplanka C., Newman R. M., Verschoor E. J., Heeney J. L., Towers G. J.. ( 2008b;). Rhesus macaque TRIM5 alleles have divergent antiretroviral specificities. . J Virol 82:, 7243–7247. [CrossRef][PubMed]
    [Google Scholar]
  132. Wu X., Anderson J. L., Campbell E. M., Joseph A. M., Hope T. J.. ( 2006;). Proteasome inhibitors uncouple rhesus TRIM5α restriction of HIV-1 reverse transcription and infection. . Proc Natl Acad Sci U S A 103:, 7465–7470. [CrossRef][PubMed]
    [Google Scholar]
  133. Yamashita M., Emerman M.. ( 2004;). Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. . J Virol 78:, 5670–5678. [CrossRef][PubMed]
    [Google Scholar]
  134. Yang H., Ji X., Zhao G., Ning J., Zhao Q., Aiken C., Gronenborn A. M., Zhang P., Xiong Y.. ( 2012;). Structural insight into HIV-1 capsid recognition by rhesus TRIM5α. . Proc Natl Acad Sci U S A 109:, 18372–18377. [CrossRef][PubMed]
    [Google Scholar]
  135. Yap M. W., Stoye J. P.. ( 2003;). Intracellular localisation of Fv1. . Virology 307:, 76–89. [CrossRef][PubMed]
    [Google Scholar]
  136. Yap M. W., Nisole S., Lynch C., Stoye J. P.. ( 2004;). Trim5α protein restricts both HIV-1 and murine leukemia virus. . Proc Natl Acad Sci U S A 101:, 10786–10791. [CrossRef][PubMed]
    [Google Scholar]
  137. Yap M. W., Nisole S., Stoye J. P.. ( 2005;). A single amino acid change in the SPRY domain of human Trim5α leads to HIV-1 restriction. . Curr Biol 15:, 73–78. [CrossRef][PubMed]
    [Google Scholar]
  138. Yap M. W., Mortuza G. B., Taylor I. A., Stoye J. P.. ( 2007;). The design of artificial retroviral restriction factors. . Virology 365:, 302–314. [CrossRef][PubMed]
    [Google Scholar]
  139. Yap M. W., Lindemann D., Stanke N., Reh J., Westphal D., Hanenberg H., Ohkura S., Stoye J. P.. ( 2008;). Restriction of foamy viruses by primate Trim5α. . J Virol 82:, 5429–5439. [CrossRef][PubMed]
    [Google Scholar]
  140. Ylinen L. M., Price A. J., Rasaiyaah J., Hué S., Rose N. J., Marzetta F., James L. C., Towers G. J.. ( 2010;). Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity. . PLoS Pathog 6:, e1001062. [CrossRef][PubMed]
    [Google Scholar]
  141. Zhang F., Ya L. T., Iwatani Y., Higo K., Suzuki Y., Tanaka M., Nakahara T., Ono T., Sakai H.. & other authors ( 2000;). Resistance to Friend murine leukemia virus infection conferred by the Fv-4 gene is recessive but appears dominant from the effect of the immune system. . J Virol 74:, 6193–6197. [CrossRef][PubMed]
    [Google Scholar]
  142. Zhao G., Ke D., Vu T., Ahn J., Shah V. B., Yang R., Aiken C., Charlton L. M., Gronenborn A. M., Zhang P.. ( 2011;). Rhesus TRIM5α disrupts the HIV-1 capsid at the inter-hexamer interfaces. . PLoS Pathog 7:, e1002009. [CrossRef][PubMed]
    [Google Scholar]
  143. Zhao G., Perilla J. R., Yufenyuy E. L., Meng X., Chen B., Ning J., Ahn J., Gronenborn A. M., Schulten K.. & other authors ( 2013;). Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. . Nature 497:, 643–646. [CrossRef][PubMed]
    [Google Scholar]
  144. Zheng Y.-H., Jeang K.-T., Tokunaga K.. ( 2012;). Host restriction factors in retroviral infection: promises in virus-host interaction. . Retrovirology 9:, 112. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.058180-0
Loading
/content/journal/jgv/10.1099/vir.0.058180-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error