1887

Abstract

Virus infection of mammalian cells is sensed by pattern recognition receptors and leads to an innate immune response that restricts virus replication and induces adaptive immunity. In response, viruses have evolved many countermeasures that enable them to replicate and be transmitted to new hosts, despite the host innate immune response. Poxviruses, such as vaccinia virus (VACV), have large DNA genomes and encode many proteins that are dedicated to host immune evasion. Some of these proteins are secreted from the infected cell, where they bind and neutralize complement factors, interferons, cytokines and chemokines. Other VACV proteins function inside cells to inhibit apoptosis or signalling pathways that lead to the production of interferons and pro-inflammatory cytokines and chemokines. In this review, these VACV immunomodulatory proteins are described and the potential to create more immunogenic VACV strains by manipulation of the gene encoding these proteins is discussed.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.055921-0
2013-11-01
2024-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/11/2367.html?itemId=/content/journal/jgv/10.1099/vir.0.055921-0&mimeType=html&fmt=ahah

References

  1. Alcamí A. 2003; Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3:36–50 [View Article][PubMed]
    [Google Scholar]
  2. Alcamí A., Smith G. L. 1992; A soluble receptor for interleukin-1 β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167 [View Article][PubMed]
    [Google Scholar]
  3. Alcamí A., Smith G. L. 1995; Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J Virol 69:4633–4639[PubMed]
    [Google Scholar]
  4. Alcamí A., Smith G. L. 1996a; A mechanism for the inhibition of fever by a virus. Proc Natl Acad Sci U S A 93:11029–11034 [View Article][PubMed]
    [Google Scholar]
  5. Alcamí A., Smith G. L. 1996b; Receptors for gamma-interferon encoded by poxviruses: implications for the unknown origin of vaccinia virus. Trends Microbiol 4:321–326 [View Article][PubMed]
    [Google Scholar]
  6. Alcamí A., Smith G. L. 2002; The vaccinia virus soluble interferon-gamma receptor is a homodimer. J Gen Virol 83:545–549[PubMed]
    [Google Scholar]
  7. Alcamí A., Symons J. A., Collins P. D., Williams T. J., Smith G. L. 1998; Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J Immunol 160:624–633[PubMed]
    [Google Scholar]
  8. Alcamí A., Khanna A., Paul N. L., Smith G. L. 1999; Vaccinia virus strains Lister, USSR and Evans express soluble and cell-surface tumour necrosis factor receptors. J Gen Virol 80:949–959[PubMed]
    [Google Scholar]
  9. Alcamí A., Symons J. A., Smith G. L. 2000; The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN. J Virol 74:11230–11239 [View Article][PubMed]
    [Google Scholar]
  10. Alejo A., Ruiz-Argüello M. B., Ho Y., Smith V. P., Saraiva M., Alcamí A. 2006; A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc Natl Acad Sci U S A 103:5995–6000 [View Article][PubMed]
    [Google Scholar]
  11. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396 [View Article][PubMed]
    [Google Scholar]
  12. Aoyagi M., Zhai D., Jin C., Aleshin A. E., Stec B., Reed J. C., Liddington R. C. 2007; Vaccinia virus N1L protein resembles a B cell lymphoma-2 (Bcl-2) family protein. Protein Sci 16:118–124 [View Article][PubMed]
    [Google Scholar]
  13. Bahar M. W., Kenyon J. C., Pütz M. M., Abrescia N. G., Pease J. E., Wise E. L., Stuart D. I., Smith G. L., Grimes J. M. 2008; Structure and function of A41, a vaccinia virus chemokine binding protein. PLoS Pathog 4:e5 [View Article][PubMed]
    [Google Scholar]
  14. Banadyga L., Veugelers K., Campbell S., Barry M. 2009; The fowlpox virus BCL-2 homologue, FPV039, interacts with activated Bax and a discrete subset of BH3-only proteins to inhibit apoptosis. J Virol 83:7085–7098 [View Article][PubMed]
    [Google Scholar]
  15. Baraz L., Khazanov E., Condiotti R., Kotler M., Nagler A. 1999; Natural killer (NK) cells prevent virus production in cell culture. Bone Marrow Transplant 24:179–189 [View Article][PubMed]
    [Google Scholar]
  16. Bartlett N., Symons J. A., Tscharke D. C., Smith G. L. 2002; The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83:1965–1976[PubMed]
    [Google Scholar]
  17. Bartlett N. W., Buttigieg K., Kotenko S. V., Smith G. L. 2005; Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model. J Gen Virol 86:1589–1596 [View Article][PubMed]
    [Google Scholar]
  18. Baxby D. 1981 Jenner’s Smallpox Vaccine. The Riddle of the Origin of Vaccinia Virus London: Heinemann;
    [Google Scholar]
  19. Beard P. M., Froggatt G. C., Smith G. L. 2006; Vaccinia virus kelch protein A55 is a 64 kDa intracellular factor that affects virus-induced cytopathic effect and the outcome of infection in a murine intradermal model. J Gen Virol 87:1521–1529 [View Article][PubMed]
    [Google Scholar]
  20. Beattie E., Tartaglia J., Paoletti E. 1991; Vaccinia virus-encoded eIF-2α homolog abrogates the antiviral effect of interferon. Virology 183:419–422 [View Article][PubMed]
    [Google Scholar]
  21. Benfield C. T., Mansur D. S., McCoy L. E., Ferguson B. J., Bahar M. W., Oldring A. P., Grimes J. M., Stuart D. I., Graham S. C., Smith G. L. 2011; Mapping the IkappaB kinase β (IKKβ)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKβ-mediated activation of nuclear factor κB. J Biol Chem 286:20727–20735 [View Article][PubMed]
    [Google Scholar]
  22. Benfield C. T., Ren H., Lucas S. J., Bahsoun B., Smith G. L. 2013; Vaccinia virus protein K7 is a virulence factor that alters the acute immune response to infection. J Gen Virol 94:1647–1657 [View Article][PubMed]
    [Google Scholar]
  23. Benhnia M. R., McCausland M. M., Moyron J., Laudenslager J., Granger S., Rickert S., Koriazova L., Kubo R., Kato S., Crotty S. 2009; Vaccinia virus extracellular enveloped virion neutralization in vitro and protection in vivo depend on complement. J Virol 83:1201–1215 [View Article][PubMed]
    [Google Scholar]
  24. Bennink J. R., Yewdell J. W., Smith G. L., Moller C., Moss B. 1984; Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells. Nature 311:578–579 [View Article][PubMed]
    [Google Scholar]
  25. Bennink J. R., Yewdell J. W., Smith G. L., Moss B. 1986; Recognition of cloned influenza virus hemagglutinin gene products by cytotoxic T lymphocytes. J Virol 57:786–791[PubMed]
    [Google Scholar]
  26. Bennink J. R., Yewdell J. W., Smith G. L., Moss B. 1987; Anti-influenza virus cytotoxic T lymphocytes recognize the three viral polymerases and a nonstructural protein: responsiveness to individual viral antigens is major histocompatibility complex controlled. J Virol 61:1098–1102[PubMed]
    [Google Scholar]
  27. Blanchard T. J., Alcamí A., Andrea P., Smith G. L. 1998; Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 79:1159–1167[PubMed]
    [Google Scholar]
  28. Bogunovic D., Byun M., Durfee L. A., Abhyankar A., Sanal O., Mansouri D., Salem S., Radovanovic I., Grant A. V. other authors 2012; Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337:1684–1688 [View Article][PubMed]
    [Google Scholar]
  29. Born T. L., Morrison L. A., Esteban D. J., VandenBos T., Thebeau L. G., Chen N., Spriggs M. K., Sims J. E., Buller R. M. 2000; A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J Immunol 164:3246–3254[PubMed] [CrossRef]
    [Google Scholar]
  30. Bowie A., Kiss-Toth E., Symons J. A., Smith G. L., Dower S. K., O’Neill L. A. 2000; A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A 97:10162–10167 [View Article][PubMed]
    [Google Scholar]
  31. Brandt T. A., Jacobs B. L. 2001; Both carboxy- and amino-terminal domains of the vaccinia virus interferon resistance gene, E3L, are required for pathogenesis in a mouse model. J Virol 75:850–856 [View Article][PubMed]
    [Google Scholar]
  32. Breitbach C. J., Burke J., Jonker D., Stephenson J., Haas A. R., Chow L. Q., Nieva J., Hwang T. H., Moon A. other authors 2011; Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477:99–102 [View Article][PubMed]
    [Google Scholar]
  33. Brooks C. R., Elliott T., Parham P., Khakoo S. I. 2006; The inhibitory receptor NKG2A determines lysis of vaccinia virus-infected autologous targets by NK cells. J Immunol 176:1141–1147[PubMed] [CrossRef]
    [Google Scholar]
  34. Brum L. M., Lopez M. C., Varela J. C., Baker H. V., Moyer R. W. 2003; Microarray analysis of A549 cells infected with rabbitpox virus (RPV): a comparison of wild-type RPV and RPV deleted for the host range gene, SPI-1. Virology 315:322–334 [View Article][PubMed]
    [Google Scholar]
  35. Brutkiewicz R. R., Klaus S. J., Welsh R. M. 1992; Window of vulnerability of vaccinia virus-infected cells to natural killer (NK) cell-mediated cytolysis correlates with enhanced NK cell triggering and is concomitant with a decrease in H-2 class I antigen expression. Nat Immun 11:203–214[PubMed]
    [Google Scholar]
  36. Bukowski J. F., Woda B. A., Habu S., Okumura K., Welsh R. M. 1983; Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol 131:1531–1538[PubMed]
    [Google Scholar]
  37. Burns J. M., Dairaghi D. J., Deitz M., Tsang M., Schall T. J. 2002; Comprehensive mapping of poxvirus vCCI chemokine-binding protein. Expanded range of ligand interactions and unusual dissociation kinetics. J Biol Chem 277:2785–2789 [View Article][PubMed]
    [Google Scholar]
  38. Calderara S., Xiang Y., Moss B. 2001; Orthopoxvirus IL-18 binding proteins: affinities and antagonist activities. Virology 279:22–26 [View Article][PubMed]
    [Google Scholar]
  39. Carfí A., Smith C. A., Smolak P. J., McGrew J., Wiley D. C. 1999; Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus. Proc Natl Acad Sci U S A 96:12379–12383 [View Article][PubMed]
    [Google Scholar]
  40. Carrara G., Saraiva N., Gubser C., Johnson B. F., Smith G. L. 2012; Six-transmembrane topology for Golgi anti-apoptotic protein (GAAP) and Bax inhibitor 1 (BI-1) provides model for the transmembrane Bax inhibitor-containing motif (TMBIM) family. J Biol Chem 287:15896–15905 [View Article][PubMed]
    [Google Scholar]
  41. Carroll K., Elroy-Stein O., Moss B., Jagus R. 1993; Recombinant vaccinia virus K3L gene product prevents activation of double-stranded RNA-dependent, initiation factor 2α-specific protein kinase. J Biol Chem 268:12837–12842[PubMed]
    [Google Scholar]
  42. Chang H. W., Watson J. C., Jacobs B. L. 1992; The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A 89:4825–4829 [View Article][PubMed]
    [Google Scholar]
  43. Charo I. F., Ransohoff R. M. 2006; The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621 [View Article][PubMed]
    [Google Scholar]
  44. Chavan R., Marfatia K. A., An I. C., Garber D. A., Feinberg M. B. 2006; Expression of CCL20 and granulocyte-macrophage colony-stimulating factor, but not Flt3-L, from modified vaccinia virus ankara enhances antiviral cellular and humoral immune responses. J Virol 80:7676–7687 [View Article][PubMed]
    [Google Scholar]
  45. Chen R. A., Jacobs N., Smith G. L. 2006; Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. J Gen Virol 87:1451–1458 [View Article][PubMed]
    [Google Scholar]
  46. Chen R. A., Ryzhakov G., Cooray S., Randow F., Smith G. L. 2008; Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. PLoS Pathog 4:e22 [View Article][PubMed]
    [Google Scholar]
  47. Chisholm S. E., Reyburn H. T. 2006; Recognition of vaccinia virus-infected cells by human natural killer cells depends on natural cytotoxicity receptors. J Virol 80:2225–2233 [View Article][PubMed]
    [Google Scholar]
  48. Clark R. H., Kenyon J. C., Bartlett N. W., Tscharke D. C., Smith G. L. 2006; Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. J Gen Virol 87:29–38 [View Article][PubMed]
    [Google Scholar]
  49. Cohen M. E., Xiao Y., Eisenberg R. J., Cohen G. H., Isaacs S. N. 2011; Antibody against extracellular vaccinia virus (EV) protects mice through complement and Fc receptors. PLoS ONE 6:e20597 [View Article][PubMed]
    [Google Scholar]
  50. Colamonici O. R., Domanski P., Sweitzer S. M., Larner A., Buller R. M. 1995; Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon α transmembrane signaling. J Biol Chem 270:15974–15978 [View Article][PubMed]
    [Google Scholar]
  51. Cooray S., Bahar M. W., Abrescia N. G., McVey C. E., Bartlett N. W., Chen R. A., Stuart D. I., Grimes J. M., Smith G. L. 2007; Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol 88:1656–1666 [View Article][PubMed]
    [Google Scholar]
  52. Crotty S., Felgner P., Davies H., Glidewell J., Villarreal L., Ahmed R. 2003; Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol 171:4969–4973[PubMed] [CrossRef]
    [Google Scholar]
  53. Dai K., Liu Y., Liu M., Xu J., Huang W., Huang X., Liu L., Wan Y., Hao Y., Shao Y. 2008; Pathogenicity and immunogenicity of recombinant Tiantan Vaccinia Virus with deleted C12L and A53R genes. Vaccine 26:5062–5071 [View Article][PubMed]
    [Google Scholar]
  54. de Mattia F., Gubser C., van Dommelen M. M., Visch H. J., Distelmaier F., Postigo A., Luyten T., Parys J. B., de Smedt H. other authors 2009; Human Golgi antiapoptotic protein modulates intracellular calcium fluxes. Mol Biol Cell 20:3638–3645 [View Article][PubMed]
    [Google Scholar]
  55. DeHaven B. C., Girgis N. M., Xiao Y., Hudson P. N., Olson V. A., Damon I. K., Isaacs S. N. 2010; Poxvirus complement control proteins are expressed on the cell surface through an intermolecular disulfide bridge with the viral A56 protein. J Virol 84:11245–11254 [View Article][PubMed]
    [Google Scholar]
  56. Delano M. L., Brownstein D. G. 1995; Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype. J Virol 69:5875–5877[PubMed]
    [Google Scholar]
  57. Dinarello C. A. 2006; Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr 83:447S–455S[PubMed]
    [Google Scholar]
  58. DiPerna G., Stack J., Bowie A. G., Boyd A., Kotwal G., Zhang Z., Arvikar S., Latz E., Fitzgerald K. A., Marshall W. L. 2004; Poxvirus protein N1L targets the I-κB kinase complex, inhibits signaling to NF-κB by the tumor necrosis factor superfamily of receptors, and inhibits NF-κB and IRF3 signaling by toll-like receptors. J Biol Chem 279:36570–36578 [View Article][PubMed]
    [Google Scholar]
  59. Dobbelstein M., Shenk T. 1996; Protection against apoptosis by the vaccinia virus SPI-2 (B13R) gene product. J Virol 70:6479–6485[PubMed]
    [Google Scholar]
  60. Dokun A. O., Kim S., Smith H. R., Kang H. S., Chu D. T., Yokoyama W. M. 2001; Specific and nonspecific NK cell activation during virus infection. Nat Immunol 2:951–956 [View Article][PubMed]
    [Google Scholar]
  61. Ember S. W., Ren H., Ferguson B. J., Smith G. L. 2012; Vaccinia virus protein C4 inhibits NF-κB activation and promotes virus virulence. J Gen Virol 93:2098–2108 [View Article][PubMed]
    [Google Scholar]
  62. Engelstad M., Smith G. L. 1993; The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence. Virology 194:627–637 [View Article][PubMed]
    [Google Scholar]
  63. Engelstad M., Howard S. T., Smith G. L. 1992; A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology 188:801–810 [View Article][PubMed]
    [Google Scholar]
  64. Ennis F. A., Cruz J., Demkowicz W. E. Jr, Rothman A. L., McClain D. J. 2002; Primary induction of human CD8+ cytotoxic T lymphocytes and interferon-γ-producing T cells after smallpox vaccination. J Infect Dis 185:1657–1659 [View Article][PubMed]
    [Google Scholar]
  65. Fahy A. S., Clark R. H., Glyde E. F., Smith G. L. 2008; Vaccinia virus protein C16 acts intracellularly to modulate the host response and promote virulence. J Gen Virol 89:2377–2387 [View Article][PubMed]
    [Google Scholar]
  66. Falivene J., Del Médico Zajac M. P., Pascutti M. F., Rodriguez A. M., Maeto C., Perdiguero B., Gomez C. E., Esteban M., Calamante G., Gherardi M. M. 2012; Improving the MVA vaccine potential by deleting the viral gene coding for the IL-18 binding protein. PLoS ONE 7:e32220 [View Article][PubMed]
    [Google Scholar]
  67. Fallon P. G., Alcamí A. 2006; Pathogen-derived immunomodulatory molecules: future immunotherapeutics?. Trends Immunol 27:470–476 [View Article][PubMed]
    [Google Scholar]
  68. Fang M., Lanier L. L., Sigal L. J. 2008; A role for NKG2D in NK cell-mediated resistance to poxvirus disease. PLoS Pathog 4:e30 [View Article][PubMed]
    [Google Scholar]
  69. Fang M., Orr M. T., Spee P., Egebjerg T., Lanier L. L., Sigal L. J. 2011; CD94 is essential for NK cell-mediated resistance to a lethal viral disease. Immunity 34:579–589 [View Article][PubMed]
    [Google Scholar]
  70. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877 [View Article][PubMed]
    [Google Scholar]
  71. Fenner F., Anderson D. A., Arita I., Jezek Z., Ladnyi I. D. 1988 Smallpox and its Eradication Geneva: World Health Organisation;
    [Google Scholar]
  72. Ferguson B. J., Mansur D. S., Peters N. E., Ren H., Smith G. L. 2012; DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. eLife 1:e00047 [View Article][PubMed]
    [Google Scholar]
  73. Ferguson B. J., Benfield C. T., Ren H., Lee V. H., Frazer G. L., Strnadova P., Sumner R. P., Smith G. L. 2013; Vaccinia virus protein N2 is a nuclear IRF3 inhibitor that promotes virulence. J Gen Virol 94:2070–2081 [View Article][PubMed]
    [Google Scholar]
  74. Flexner C., Hugin A., Moss B. 1987; Prevention of vaccinia virus infection in immunodeficient mice by vector-directed IL-2 expression. Nature 330:259–262 [View Article][PubMed]
    [Google Scholar]
  75. Froggatt G. C., Smith G. L., Beard P. M. 2007; Vaccinia virus gene F3L encodes an intracellular protein that affects the innate immune response. J Gen Virol 88:1917–1921 [View Article][PubMed]
    [Google Scholar]
  76. Fujioka N., Akazawa R., Ohashi K., Fujii M., Ikeda M., Kurimoto M. 1999; Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. J Virol 73:2401–2409[PubMed]
    [Google Scholar]
  77. Garber D. A., O’Mara L. A., Gangadhara S., McQuoid M., Zhang X., Zheng R., Gill K., Verma M., Yu T. other authors 2012; Deletion of specific immune-modulatory genes from modified vaccinia virus Ankara-based HIV vaccines engenders improved immunogenicity in rhesus macaques. J Virol 86:12605–12615 [View Article][PubMed]
    [Google Scholar]
  78. García M. A., Guerra S., Gil J., Jimenez V., Esteban M. 2002; Anti-apoptotic and oncogenic properties of the dsRNA-binding protein of vaccinia virus, E3L. Oncogene 21:8379–8387 [View Article][PubMed]
    [Google Scholar]
  79. García-Arriaza J., Najera J. L., Gomez C. E., Sorzano C. O., Esteban M. 2010; Immunogenic profiling in mice of a HIV/AIDS vaccine candidate (MVA-B) expressing four HIV-1 antigens and potentiation by specific gene deletions. PLoS ONE 5:e12395 [View Article][PubMed]
    [Google Scholar]
  80. García-Arriaza J., Najera J. L., Gomez C. E., Tewabe N., Sorzano C. O., Calandra T., Roger T., Esteban M. 2011; A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses. PLoS ONE 6:e24244 [View Article][PubMed]
    [Google Scholar]
  81. García-Calvo M., Peterson E. P., Leiting B., Ruel R., Nicholson D. W., Thornberry N. A. 1998; Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613 [View Article][PubMed]
    [Google Scholar]
  82. Gardner J. D., Tscharke D. C., Reading P. C., Smith G. L. 2001; Vaccinia virus semaphorin A39R is a 50-55 kDa secreted glycoprotein that affects the outcome of infection in a murine intradermal model. J Gen Virol 82:2083–2093[PubMed]
    [Google Scholar]
  83. Gedey R., Jin X. L., Hinthong O., Shisler J. L. 2006; Poxviral regulation of the host NF-κB response: the vaccinia virus M2L protein inhibits induction of NF-κB activation via an ERK2 pathway in virus-infected human embryonic kidney cells. J Virol 80:8676–8685 [View Article][PubMed]
    [Google Scholar]
  84. Gerlic M., Faustin B., Postigo A., Yu E. C.-W., Proell M., Gombosuren N., Krajewska M., Flynn R., Croft M. other authors 2013; Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation. Proc Natl Acad Sci U S A 110:7808–7813 [View Article][PubMed]
    [Google Scholar]
  85. Gillard G. O., Bivas-Benita M., Hovav A. H., Grandpre L. E., Panas M. W., Seaman M. S., Haynes B. F., Letvin N. L. 2011; Thy1+ NK [corrected] cells from vaccinia virus-primed mice confer protection against vaccinia virus challenge in the absence of adaptive lymphocytes. PLoS Pathog 7:e1002141 [View Article][PubMed]
    [Google Scholar]
  86. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266, 517–563 [View Article][PubMed]
    [Google Scholar]
  87. Gomez C. E., Najera J. L., Krupa M., Esteban M. 2008; The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. Curr Gene Ther 8:97–120 [View Article][PubMed]
    [Google Scholar]
  88. Gomez C. E., Perdiguero B., Najera J. L., Sorzano C. O., Jimenez V., Gonzalez-Sanz R., Esteban M. 2012; Removal of vaccinia virus genes that block interferon type I and II pathways improves adaptive and memory responses of the HIV/AIDS vaccine candidate NYVAC-C in mice. J Virol 86:5026–5038 [View Article][PubMed]
    [Google Scholar]
  89. Gracie J. A., Robertson S. E., McInnes I. B. 2003; Interleukin-18. J Leukoc Biol 73:213–224 [View Article][PubMed]
    [Google Scholar]
  90. Graham K. A., Lalani A. S., Macen J. L., Ness T. L., Barry M., Liu L. Y., Lucas A., Clark-Lewis I., Moyer R. W., McFadden G. 1997; The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology 229:12–24 [View Article][PubMed]
    [Google Scholar]
  91. Graham S. C., Bahar M. W., Abrescia N. G., Smith G. L., Stuart D. I., Grimes J. M. 2007; Structure of CrmE, a virus-encoded tumour necrosis factor receptor. J Mol Biol 372:660–671 [View Article][PubMed]
    [Google Scholar]
  92. Graham S. C., Bahar M. W., Cooray S., Chen R. A., Whalen D. M., Abrescia N. G., Alderton D., Owens R. J., Stuart D. I. other authors 2008; Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF-κB rather than apoptosis. PLoS Pathog 4:e1000128 [View Article][PubMed]
    [Google Scholar]
  93. Gubser C., Smith G. L. 2002; The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J Gen Virol 83:855–872[PubMed]
    [Google Scholar]
  94. Gubser C., Hué S., Kellam P., Smith G. L. 2004; Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85:105–117 [View Article][PubMed]
    [Google Scholar]
  95. Gubser C., Bergamaschi D., Hollinshead M., Lu X., van Kuppeveld F. J., Smith G. L. 2007; A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathog 3:e17 [View Article][PubMed]
    [Google Scholar]
  96. Guerra S., Lopez-Fernandez L. A., Conde R., Pascual-Montano A., Harshman K., Esteban M. 2004; Microarray analysis reveals characteristic changes of host cell gene expression in response to attenuated modified vaccinia virus Ankara infection of human HeLa cells. J Virol 78:5820–5834 [View Article][PubMed]
    [Google Scholar]
  97. Guerra S., Caceres A., Knobeloch K. P., Horak I., Esteban M. 2008; Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog 4:e1000096 [View Article][PubMed]
    [Google Scholar]
  98. Haller O., Kochs G., Weber F. 2006; The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344:119–130 [View Article][PubMed]
    [Google Scholar]
  99. Hammaker D., Boyle D. L., Firestein G. S. 2012; Synoviocyte innate immune responses: TANK-binding kinase-1 as a potential therapeutic target in rheumatoid arthritis. Rheumatology 51:610–618 [View Article][PubMed]
    [Google Scholar]
  100. Hammarlund E., Lewis M. W., Hansen S. G., Strelow L. I., Nelson J. A., Sexton G. J., Hanifin J. M., Slifka M. K. 2003; Duration of antiviral immunity after smallpox vaccination. Nat Med 9:1131–1137 [View Article][PubMed]
    [Google Scholar]
  101. Harte M. T., Haga I. R., Maloney G., Gray P., Reading P. C., Bartlett N. W., Smith G. L., Bowie A., O’Neill L. A. 2003; The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197:343–351 [View Article][PubMed]
    [Google Scholar]
  102. Heo J., Reid T., Ruo L., Breitbach C. J., Rose S., Bloomston M., Cho M., Lim H. Y., Chung H. C. other authors 2013; Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 19:329–336 [View Article][PubMed]
    [Google Scholar]
  103. Hornung V., Ablasser A., Charrel-Dennis M., Bauernfeind F., Horvath G., Caffrey D. R., Latz E., Fitzgerald K. A. 2009; AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518 [View Article][PubMed]
    [Google Scholar]
  104. Howard S. T., Chan Y. S., Smith G. L. 1991; Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumor necrosis factor receptor family. Virology 180:633–647 [View Article][PubMed]
    [Google Scholar]
  105. Hu F. Q., Smith C. A., Pickup D. J. 1994; Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the type II TNF receptor. Virology 204:343–356 [View Article][PubMed]
    [Google Scholar]
  106. Huang J., Smirnov S. V., Lewis-Antes A., Balan M., Li W., Tang S., Silke G. V., Pütz M. M., Smith G. L., Kotenko S. V. 2007; Inhibition of type I and type III interferons by a secreted glycoprotein from Yaba-like disease virus. Proc Natl Acad Sci U S A 104:9822–9827 [View Article][PubMed]
    [Google Scholar]
  107. Isaacs A., Lindenmann J. 1957; Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147:258–267 [View Article][PubMed]
    [Google Scholar]
  108. Isaacs A., Lindenmann J., Valentine R. C. 1957; Virus interference. II. Some properties of interferon. Proc R Soc Lond B Biol Sci 147:268–273 [View Article][PubMed]
    [Google Scholar]
  109. Isaacs S. N., Kotwal G. J., Moss B. 1992a; Vaccinia virus complement-control protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence. Proc Natl Acad Sci U S A 89:628–632 [View Article][PubMed]
    [Google Scholar]
  110. Isaacs S. N., Wolffe E. J., Payne L. G., Moss B. 1992b; Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J Virol 66:7217–7224[PubMed]
    [Google Scholar]
  111. Jackson R. J., Ramsay A. J., Christensen C. D., Beaton S., Hall D. F., Ramshaw I. A. 2001; Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J Virol 75:1205–1210 [View Article][PubMed]
    [Google Scholar]
  112. Jackson S. S., Ilyinskii P., Philippon V., Gritz L., Yafal A. G., Zinnack K., Beaudry K. R., Manson K. H., Lifton M. A. other authors 2005; Role of genes that modulate host immune responses in the immunogenicity and pathogenicity of vaccinia virus. J Virol 79:6554–6559 [View Article][PubMed]
    [Google Scholar]
  113. Jacobs N., Chen R. A., Gubser C., Najarro P., Smith G. L. 2006; Intradermal immune response after infection with Vaccinia virus. J Gen Virol 87:1157–1161 [View Article][PubMed]
    [Google Scholar]
  114. Jacobs N., Bartlett N. W., Clark R. H., Smith G. L. 2008; Vaccinia virus lacking the Bcl-2-like protein N1 induces a stronger natural killer cell response to infection. J Gen Virol 89:2877–2881 [View Article][PubMed]
    [Google Scholar]
  115. Jacobs B., Langland J., Kibler K., Denzler K., White S., Holechek S., Wong S., Huynh T., Baskin C. 2009; Vaccinia virus vaccines: past, present and future. Antiviral Res 84:1–13 [View Article][PubMed]
    [Google Scholar]
  116. Jarahian M., Fiedler M., Cohnen A., Djandji D., Hammerling G. J., Gati C., Cerwenka A., Turner P. C., Moyer R. W. other authors 2011; Modulation of NKp30- and NKp46-mediated natural killer cell responses by poxviral hemagglutinin. PLoS Pathog 7:e1002195 [View Article][PubMed]
    [Google Scholar]
  117. Kalverda A. P., Thompson G. S., Vogel A., Schröder M., Bowie A. G., Khan A. R., Homans S. W. 2009; Poxvirus K7 protein adopts a Bcl-2 fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. J Mol Biol 385:843–853 [View Article][PubMed]
    [Google Scholar]
  118. Kanzler H., Barrat F. J., Hessel E. M., Coffman R. L. 2007; Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 13:552–559 [View Article][PubMed]
    [Google Scholar]
  119. Kato H., Sato S., Yoneyama M., Yamamoto M., Uematsu S., Matsui K., Tsujimura T., Takeda K., Fujita T. other authors 2005; Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19–28 [View Article][PubMed]
    [Google Scholar]
  120. Kennedy J. S., Frey S. E., Yan L., Rothman A. L., Cruz J., Newman F. K., Orphin L., Belshe R. B., Ennis F. A. 2004; Induction of human T cell-mediated immune responses after primary and secondary smallpox vaccination. J Infect Dis 190:1286–1294 [View Article][PubMed]
    [Google Scholar]
  121. Kettle S., Blake N. W., Law K. M., Smith G. L. 1995; Vaccinia virus serpins B13R (SPI-2) and B22R (SPI-1) encode M r 38.5 and 40K, intracellular polypeptides that do not affect virus virulence in a murine intranasal model. Virology 206:136–147 [View Article][PubMed]
    [Google Scholar]
  122. Kettle S., Alcamí A., Khanna A., Ehret R., Jassoy C., Smith G. L. 1997; Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1β-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1β-induced fever. J Gen Virol 78:677–685[PubMed]
    [Google Scholar]
  123. Kibler K. V., Shors T., Perkins K. B., Zeman C. C., Banaszak M. P., Biesterfeldt J., Langland J. O., Jacobs B. L. 1997; Double-stranded RNA is a trigger for apoptosis in vaccinia virus-infected cells. J Virol 71:1992–2003[PubMed]
    [Google Scholar]
  124. Kim Y. G., Muralinath M., Brandt T., Pearcy M., Hauns K., Lowenhaupt K., Jacobs B. L., Rich A. 2003; A role for Z-DNA binding in vaccinia virus pathogenesis. Proc Natl Acad Sci U S A 100:6974–6979 [View Article][PubMed]
    [Google Scholar]
  125. Kim M. J., Hwang S. Y., Imaizumi T., Yoo J. Y. 2008; Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol 82:1474–1483 [View Article][PubMed]
    [Google Scholar]
  126. Kirn D. H., Thorne S. H. 2009; Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 9:64–71 [View Article][PubMed]
    [Google Scholar]
  127. Kirn D. H., Wang Y., Le Boeuf F., Bell J., Thorne S. H. 2007; Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med 4:e353 [View Article][PubMed]
    [Google Scholar]
  128. Kirwan S., Merriam D., Barsby N., McKinnon A., Burshtyn D. N. 2006; Vaccinia virus modulation of natural killer cell function by direct infection. Virology 347:75–87 [View Article][PubMed]
    [Google Scholar]
  129. Kohonen-Corish M. R., King N. J., Woodhams C. E., Ramshaw I. A. 1990; Immunodeficient mice recover from infection with vaccinia virus expressing interferon-γ. Eur J Immunol 20:157–161 [View Article][PubMed]
    [Google Scholar]
  130. Kotwal G. J., Moss B. 1988; Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature 335:176–178 [View Article][PubMed]
    [Google Scholar]
  131. Kotwal G. J., Hugin A. W., Moss B. 1989; Mapping and insertional mutagenesis of a vaccinia virus gene encoding a 13,800-Da secreted protein. Virology 171:579–587 [View Article][PubMed]
    [Google Scholar]
  132. Kvansakul M., Yang H., Fairlie W. D., Czabotar P. E., Fischer S. F., Perugini M. A., Huang D. C., Colman P. M. 2008; Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ 15:1564–1571 [View Article][PubMed]
    [Google Scholar]
  133. Lane J. M., Ruben F. L., Neff J. M., Millar J. D. 1969; Complications of smallpox vaccination, 1968. N Engl J Med 281:1201–1208 [View Article][PubMed]
    [Google Scholar]
  134. Lanier L. L. 2005; NK cell recognition. Annu Rev Immunol 23:225–274 [View Article][PubMed]
    [Google Scholar]
  135. Lee D. F., Hung M. C. 2008; Advances in targeting IKK and IKK-related kinases for cancer therapy. Clin Cancer Res 14:5656–5662 [View Article][PubMed]
    [Google Scholar]
  136. Legrand F. A., Verardi P. H., Jones L. A., Chan K. S., Peng Y., Yilma T. D. 2004; Induction of potent humoral and cell-mediated immune responses by attenuated vaccinia virus vectors with deleted serpin genes. J Virol 78:2770–2779 [View Article][PubMed]
    [Google Scholar]
  137. Lehmann M. H., Kastenmuller W., Kandemir J. D., Brandt F., Suezer Y., Sutter G. 2009; Modified vaccinia virus ankara triggers chemotaxis of monocytes and early respiratory immigration of leukocytes by induction of CCL2 expression. J Virol 83:2540–2552 [View Article][PubMed]
    [Google Scholar]
  138. Locksley R. M., Killeen N., Lenardo M. J. 2001; The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501 [View Article][PubMed]
    [Google Scholar]
  139. Lu G., Reinert J. T., Pitha-Rowe I., Okumura A., Kellum M., Knobeloch K. P., Hassel B., Pitha P. M. 2006; ISG15 enhances the innate antiviral response by inhibition of IRF-3 degradation. Cell Mol Biol 52:29–41[PubMed]
    [Google Scholar]
  140. Luo J. L., Kamata H., Karin M. 2005; IKK/NF-κB signaling: balancing life and death – a new approach to cancer therapy. J Clin Invest 115:2625–2632 [View Article][PubMed]
    [Google Scholar]
  141. Lustig S., Fogg C., Whitbeck J. C., Moss B. 2004; Synergistic neutralizing activities of antibodies to outer membrane proteins of the two infectious forms of vaccinia virus in the presence of complement. Virology 328:30–35 [View Article][PubMed]
    [Google Scholar]
  142. Lysakova-Devine T., Keogh B., Harrington B., Nagpal K., Halle A., Golenbock D. T., Monie T., Bowie A. G. 2010; Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule. J Immunol 185:4261–4271 [View Article][PubMed]
    [Google Scholar]
  143. Mackett M., Smith G. L., Moss B. 1982; Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci U S A 79:7415–7419 [View Article][PubMed]
    [Google Scholar]
  144. Maluquer de Motes C., Cooray S., Ren H., Almeida G. M., McGourty K., Bahar M. W., Stuart D. I., Grimes J. M., Graham S. C., Smith G. L. 2011; Inhibition of apoptosis and NF-κB activation by vaccinia protein N1 occur via distinct binding surfaces and make different contributions to virulence. PLoS Pathog 7:e1002430 [View Article][PubMed]
    [Google Scholar]
  145. Mann B. A., Huang J. H., Li P., Chang H. C., Slee R. B., O’Sullivan A., Anita M., Yeh N., Klemsz M. J. other authors 2008; Vaccinia virus blocks Stat1-dependent and Stat1-independent gene expression induced by type I and type II interferons. J Interferon Cytokine Res 28:367–380 [View Article][PubMed]
    [Google Scholar]
  146. Mansur D. S., Maluquer de Motes C., Unterholzner L., Sumner R. P., Ferguson B. J., Ren H., Strnadova P., Bowie A. G., Smith G. L. 2013; Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence. PLoS Pathog 9:e1003183 [View Article][PubMed]
    [Google Scholar]
  147. Marié I., Durbin J. E., Levy D. E. 1998; Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J 17:6660–6669 [View Article][PubMed]
    [Google Scholar]
  148. Marq J. B., Hausmann S., Luban J., Kolakofsky D., Garcin D. 2009; The double-stranded RNA binding domain of the vaccinia virus E3L protein inhibits both RNA- and DNA-induced activation of interferon β. J Biol Chem 284:25471–25478 [View Article][PubMed]
    [Google Scholar]
  149. Martinez J., Huang X., Yang Y. 2010; Direct TLR2 signaling is critical for NK cell activation and function in response to vaccinia viral infection. PLoS Pathog 6:e1000811 [View Article][PubMed]
    [Google Scholar]
  150. Mazzon M., Peters N. E., Loenarz C., Krysztofinska E. M., Ember S. W., Ferguson B. J., Smith G. L. 2013; A mechanism for induction of a hypoxic response by vaccinia virus. Proc Natl Acad Sci U S A 110:12444–12449 [View Article][PubMed]
    [Google Scholar]
  151. McCoy S. L., Kurtz S. E., Macarthur C. J., Trune D. R., Hefeneider S. H. 2005; Identification of a peptide derived from vaccinia virus A52R protein that inhibits cytokine secretion in response to TLR-dependent signaling and reduces in vivo bacterial-induced inflammation. J Immunol 174:3006–3014[PubMed] [CrossRef]
    [Google Scholar]
  152. McCoy L. E., Fahy A. S., Chen R. A., Smith G. L. 2010; Mutations in modified virus Ankara protein 183 render it a non-functional counterpart of B14, an inhibitor of nuclear factor κB activation. J Gen Virol 91:2216–2220 [View Article][PubMed]
    [Google Scholar]
  153. McKenzie R., Kotwal G. J., Moss B., Hammer C. H., Frank M. M. 1992; Regulation of complement activity by vaccinia virus complement-control protein. J Infect Dis 166:1245–1250 [View Article][PubMed]
    [Google Scholar]
  154. McMichael A. J., Michie C. A., Gotch F. M., Smith G. L., Moss B. 1986; Recognition of influenza A virus nucleoprotein by human cytotoxic T lymphocytes. J Gen Virol 67:719–726 [View Article][PubMed]
    [Google Scholar]
  155. Meng X., Jiang C., Arsenio J., Dick K., Cao J., Xiang Y. 2009; Vaccinia virus K1L and C7L inhibit antiviral activities induced by type I interferons. J Virol 83:10627–10636 [View Article][PubMed]
    [Google Scholar]
  156. Meyer H., Sutter G., Mayr A. 1991; Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J Gen Virol 72:1031–1038 [View Article][PubMed]
    [Google Scholar]
  157. Migita K., Nakamura T. 2012; TBK1: a potential therapeutic target in RA. Rheumatology 51:588–589 [View Article][PubMed]
    [Google Scholar]
  158. Montanuy I., Alejo A., Alcamí A. 2011; Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. FASEB J 25:1960–1971 [View Article][PubMed]
    [Google Scholar]
  159. Moore J. B., Smith G. L. 1992; Steroid hormone synthesis by a vaccinia enzyme: a new type of virus virulence factor. EMBO J 11:1973–1980[PubMed]
    [Google Scholar]
  160. Moss B. 2007; Poxviridae: the viruses and their replicaton. In Fields Virology, 5th edn. pp. 2905–2946 Edited by Knipe D. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  161. Moss B. 2011; Smallpox vaccines: targets of protective immunity. Immunol Rev 239:8–26 [View Article][PubMed]
    [Google Scholar]
  162. Moss B., Salzman N. P. 1968; Sequential protein synthesis following vaccinia virus infection. J Virol 2:1016–1027[PubMed]
    [Google Scholar]
  163. Moss B., Shisler J. L. 2001; Immunology 101 at poxvirus U: immune evasion genes. Semin Immunol 13:59–66 [View Article][PubMed]
    [Google Scholar]
  164. Mossman K., Upton C., Buller R. M., McFadden G. 1995; Species specificity of ectromelia virus and vaccinia virus interferon-γ binding proteins. Virology 208:762–769 [View Article][PubMed]
    [Google Scholar]
  165. Moutaftsi M., Tscharke D. C., Vaughan K., Koelle D. M., Stern L., Calvo-Calle M., Ennis F., Terajima M., Sutter G. other authors 2010; Uncovering the interplay between CD8, CD4 and antibody responses to complex pathogens. Future Microbiol 5:221–239 [View Article][PubMed]
    [Google Scholar]
  166. Myskiw C., Arsenio J., van Bruggen R., Deschambault Y., Cao J. 2009; Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF-κB, and IRF3 pathways. J Virol 83:6757–6768 [View Article][PubMed]
    [Google Scholar]
  167. Najarro P., Traktman P., Lewis J. A. 2001; Vaccinia virus blocks gamma interferon signal transduction: viral VH1 phosphatase reverses Stat1 activation. J Virol 75:3185–3196 [View Article][PubMed]
    [Google Scholar]
  168. Natuk R. J., Welsh R. M. 1987; Accumulation and chemotaxis of natural killer/large granular lymphocytes at sites of virus replication. J Immunol 138:877–883[PubMed]
    [Google Scholar]
  169. Ng A., Tscharke D. C., Reading P. C., Smith G. L. 2001; The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. J Gen Virol 82:2095–2105[PubMed]
    [Google Scholar]
  170. Nuara A. A., Walter L. J., Logsdon N. J., Yoon S. I., Jones B. C., Schriewer J. M., Buller R. M., Walter M. R. 2008; Structure and mechanism of IFN-gamma antagonism by an orthopoxvirus IFN-γ-binding protein. Proc Natl Acad Sci U S A 105:1861–1866 [View Article][PubMed]
    [Google Scholar]
  171. Oda S., Schröder M., Khan A. R. 2009; Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Structure 17:1528–1537 [View Article][PubMed]
    [Google Scholar]
  172. Okeke M. I., Nilssen O., Traavik T. 2006; Modified vaccinia virus Ankara multiplies in rat IEC-6 cells and limited production of mature virions occurs in other mammalian cell lines. J Gen Virol 87:21–27 [View Article][PubMed]
    [Google Scholar]
  173. Osman M., Kubo T., Gill J., Neipel F., Becker M., Smith G., Weiss R., Gazzard B., Boshoff C., Gotch F. 1999; Identification of human herpesvirus 8-specific cytotoxic T-cell responses. J Virol 73:6136–6140[PubMed]
    [Google Scholar]
  174. Paez E., Esteban M. 1984; Resistance of vaccinia virus to interferon is related to an interference phenomenon between the virus and the interferon system. Virology 134:12–28 [View Article][PubMed]
    [Google Scholar]
  175. Paez E., Esteban M. 1985; Interferon prevents the generation of spontaneous deletions at the left terminus of vaccinia virus DNA. J Virol 56:75–84[PubMed]
    [Google Scholar]
  176. Paludan S. R., Bowie A. G. 2013; Immune sensing of DNA. Immunity 38:870–880 [View Article][PubMed]
    [Google Scholar]
  177. Panicali D., Paoletti E. 1982; Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc Natl Acad Sci U S A 79:4927–4931 [View Article][PubMed]
    [Google Scholar]
  178. Panicali D., Davis S. W., Weinberg R. L., Paoletti E. 1983; Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc Natl Acad Sci U S A 80:5364–5368 [View Article][PubMed]
    [Google Scholar]
  179. Paoletti E., Lipinskas B. R., Samsonoff C., Mercer S., Panicali D. 1984; Construction of live vaccines using genetically engineered poxviruses: biological activity of vaccinia virus recombinants expressing the hepatitis B virus surface antigen and the herpes simplex virus glycoprotein D. Proc Natl Acad Sci U S A 81:193–197 [View Article][PubMed]
    [Google Scholar]
  180. Parrish S., Moss B. 2006; Characterization of a vaccinia virus mutant with a deletion of the D10R gene encoding a putative negative regulator of gene expression. J Virol 80:553–561 [View Article][PubMed]
    [Google Scholar]
  181. Parrish S., Moss B. 2007; Characterization of a second vaccinia virus mRNA-decapping enzyme conserved in poxviruses. J Virol 81:12973–12978 [View Article][PubMed]
    [Google Scholar]
  182. Parrish S., Resch W., Moss B. 2007; Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proc Natl Acad Sci U S A 104:2139–2144 [View Article][PubMed]
    [Google Scholar]
  183. Perera L. P., Waldmann T. A., Mosca J. D., Baldwin N., Berzofsky J. A., Oh S. K. 2007; Development of smallpox vaccine candidates with integrated interleukin-15 that demonstrate superior immunogenicity, efficacy, and safety in mice. J Virol 81:8774–8783 [View Article][PubMed]
    [Google Scholar]
  184. Perkus M. E., Piccini A., Lipinskas B. R., Paoletti E. 1985; Recombinant vaccinia virus: immunization against multiple pathogens. Science 229:981–984 [View Article][PubMed]
    [Google Scholar]
  185. Peters N. E., Ferguson B. J., Mazzon M., Fahy A. S., Krysztofinska E., Arribas-Bosacoma R., Pearl L. H., Ren H., Smith G. L. 2013; A mechanism for the inhibition of DNA-PK-mediated DNA sensing by vaccinia virus. PLoS Pathog 9:e1003649 [CrossRef]
    [Google Scholar]
  186. Pires de Miranda M., Reading P. C., Tscharke D. C., Murphy B. J., Smith G. L. 2003; The vaccinia virus kelch-like protein C2L affects calcium-independent adhesion to the extracellular matrix and inflammation in a murine intradermal model. J Gen Virol 84:2459–2471 [View Article][PubMed]
    [Google Scholar]
  187. Postigo A., Way M. 2012; The vaccinia virus-encoded Bcl-2 homologues do not act as direct Bax inhibitors. J Virol 86:203–213 [View Article][PubMed]
    [Google Scholar]
  188. Postigo A., Cross J. R., Downward J., Way M. 2006; Interaction of F1L with the BH3 domain of Bak is responsible for inhibiting vaccinia-induced apoptosis. Cell Death Differ 13:1651–1662 [View Article][PubMed]
    [Google Scholar]
  189. Price N., Tscharke D. C., Hollinshead M., Smith G. L. 2000; Vaccinia virus gene B7R encodes an 18-kDa protein that is resident in the endoplasmic reticulum and affects virus virulence. Virology 267:65–79 [View Article][PubMed]
    [Google Scholar]
  190. Pulendran B., Ahmed R. 2006; Translating innate immunity into immunological memory: implications for vaccine development. Cell 124:849–863 [View Article][PubMed]
    [Google Scholar]
  191. Pulendran B., Li S., Nakaya H. I. 2010; Systems vaccinology. Immunity 33:516–529 [View Article][PubMed]
    [Google Scholar]
  192. Pütz M. M., Alberini I., Midgley C. M., Manini I., Montomoli E., Smith G. L. 2005; Prevalence of antibodies to Vaccinia virus after smallpox vaccination in Italy. J Gen Virol 86:2955–2960 [View Article][PubMed]
    [Google Scholar]
  193. Pütz M. M., Midgley C. M., Law M., Smith G. L. 2006; Quantification of antibody responses against multiple antigens of the two infectious forms of vaccinia virus provides a benchmark for smallpox vaccination. Nat Med 12:1310–1315 [View Article][PubMed]
    [Google Scholar]
  194. Querec T. D., Akondy R. S., Lee E. K., Cao W., Nakaya H. I., Teuwen D., Pirani A., Gernert K., Deng J. other authors 2009; Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10:116–125 [View Article][PubMed]
    [Google Scholar]
  195. Randall R. E., Goodbourn S. 2008; Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47 [View Article][PubMed]
    [Google Scholar]
  196. Ray C. A., Black R. A., Kronheim S. R., Greenstreet T. A., Sleath P. R., Salvesen G. S., Pickup D. J. 1992; Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme. Cell 69:597–604 [View Article][PubMed]
    [Google Scholar]
  197. Reading P. C., Smith G. L. 2003; Vaccinia virus interleukin-18-binding protein promotes virulence by reducing gamma interferon production and natural killer and T-cell activity. J Virol 77:9960–9968 [View Article][PubMed]
    [Google Scholar]
  198. Reading P. C., Khanna A., Smith G. L. 2002; Vaccinia virus CrmE encodes a soluble and cell surface tumor necrosis factor receptor that contributes to virus virulence. Virology 292:285–298 [View Article][PubMed]
    [Google Scholar]
  199. Reading P. C., Moore J. B., Smith G. L. 2003a; Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. J Exp Med 197:1269–1278 [View Article][PubMed]
    [Google Scholar]
  200. Reading P. C., Symons J. A., Smith G. L. 2003b; A soluble chemokine-binding protein from vaccinia virus reduces virus virulence and the inflammatory response to infection. J Immunol 170:1435–1442[PubMed] [CrossRef]
    [Google Scholar]
  201. Rehm K. E., Roper R. L. 2011; Deletion of the A35 gene from Modified Vaccinia Virus Ankara increases immunogenicity and isotype switching. Vaccine 29:3276–3283 [View Article][PubMed]
    [Google Scholar]
  202. Rice A. P., Roberts B. E. 1983; Vaccinia virus induces cellular mRNA degradation. J Virol 47:529–539[PubMed]
    [Google Scholar]
  203. Rice A. D., Turner P. C., Embury J. E., Moldawer L. L., Baker H. V., Moyer R. W. 2011; Roles of vaccinia virus genes E3L and K3L and host genes PKR and RNase L during intratracheal infection of C57BL/6 mice. J Virol 85:550–567 [View Article][PubMed]
    [Google Scholar]
  204. Roberts K. L., Smith G. L. 2008; Vaccinia virus morphogenesis and dissemination. Trends Microbiol 16:472–479 [View Article][PubMed]
    [Google Scholar]
  205. Roper R. L. 2006; Characterization of the vaccinia virus A35R protein and its role in virulence. J Virol 80:306–313 [View Article][PubMed]
    [Google Scholar]
  206. Rot A., von Andrian U. H. 2004; Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928 [View Article][PubMed]
    [Google Scholar]
  207. Ruiz-Arguello M. B., Smith V. P., Campanella G. S., Baleux F., Arenzana-Seisdedos F., Luster A. D., Alcamí A. 2008; An ectromelia virus protein that interacts with chemokines through their glycosaminoglycan binding domain. J Virol 82:917–926 [View Article][PubMed]
    [Google Scholar]
  208. Saraiva N., Prole D. L., Carrara G., de Motes C. M., Johnson B. F., Byrne B., Taylor C. W., Smith G. L. 2013a; Human and viral Golgi anti-apoptotic proteins (GAAPs) oligomerize via different mechanisms and monomeric GAAP inhibits apoptosis and modulates calcium. J Biol Chem 288:13057–13067 [View Article][PubMed]
    [Google Scholar]
  209. Saraiva N., Prole D. L., Carrara G., Johnson B. F., Taylor C. W., Parsons M., Smith G. L. 2013b; hGAAP promotes cell adhesion and migration via the stimulation of store-operated Ca2+ entry and calpain 2. J Cell Biol 202:699–713 [View Article][PubMed]
    [Google Scholar]
  210. Schmidt C. 2011; Amgen spikes interest in live virus vaccines for hard-to-treat cancers. Nat Biotechnol 29:295–296 [View Article][PubMed]
    [Google Scholar]
  211. Schröder M., Baran M., Bowie A. G. 2008; Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. EMBO J 27:2147–2157 [View Article][PubMed]
    [Google Scholar]
  212. Seet B. T., Johnston J. B., Brunetti C. R., Barrett J. W., Everett H., Cameron C., Sypula J., Nazarian S. H., Lucas A., McFadden G. 2003; Poxviruses and immune evasion. Annu Rev Immunol 21:377–423 [View Article][PubMed]
    [Google Scholar]
  213. Sharma D. P., Ramsay A. J., Maguire D. J., Rolph M. S., Ramshaw I. A. 1996; Interleukin-4 mediates down regulation of antiviral cytokine expression and cytotoxic T-lymphocyte responses and exacerbates vaccinia virus infection in vivo. J Virol 70:7103–7107[PubMed]
    [Google Scholar]
  214. Shisler J. L., Jin X. L. 2004; The vaccinia virus K1L gene product inhibits host NF-kappaB activation by preventing IκBα degradation. J Virol 78:3553–3560 [View Article][PubMed]
    [Google Scholar]
  215. Silverman R. H. 2007; Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81:12720–12729 [View Article][PubMed]
    [Google Scholar]
  216. Smith G. L. 1994; Virus strategies for evasion of the host response to infection. Trends Microbiol 2:81–88 [View Article][PubMed]
    [Google Scholar]
  217. Smith G. L., Chan Y. S. 1991; Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily. J Gen Virol 72:511–518 [View Article][PubMed]
    [Google Scholar]
  218. Smith G. L., Moss B. 1983; Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene 25:21–28 [View Article][PubMed]
    [Google Scholar]
  219. Smith G. L., Mackett M., Moss B. 1983a; Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature 302:490–495 [View Article][PubMed]
    [Google Scholar]
  220. Smith G. L., Murphy B. R., Moss B. 1983b; Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proc Natl Acad Sci U S A 80:7155–7159 [View Article][PubMed]
    [Google Scholar]
  221. Smith G. L., Howard S. T., Chan Y. S. 1989; Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. J Gen Virol 70:2333–2343 [View Article][PubMed]
    [Google Scholar]
  222. Smith G. L., Chan Y. S., Howard S. T. 1991; Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. J Gen Virol 72:1349–1376 [View Article][PubMed]
    [Google Scholar]
  223. Smith C. A., Farrah T., Goodwin R. G. 1994; The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76:959–962 [View Article][PubMed]
    [Google Scholar]
  224. Smith C. A., Hu F. Q., Smith T. D., Richards C. L., Smolak P., Goodwin R. G., Pickup D. J. 1996; Cowpox virus genome encodes a second soluble homologue of cellular TNF receptors, distinct from CrmB, that binds TNF but not LTα. Virology 223:132–147 [View Article][PubMed]
    [Google Scholar]
  225. Smith C. A., Smith T. D., Smolak P. J., Friend D., Hagen H., Gerhart M., Park L., Pickup D. J., Torrance D. other authors 1997a; Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits β chemokine activity yet lacks sequence homology to known chemokine receptors. Virology 236:316–327 [View Article][PubMed]
    [Google Scholar]
  226. Smith G. L., Symons J. A., Khanna A., Vanderplasschen A., Alcamí A. 1997b; Vaccinia virus immune evasion. Immunol Rev 159:137–154 [View Article][PubMed]
    [Google Scholar]
  227. Smith G. L., Symons J. A., Alcamí A. 1998; Poxviruses: interfering with interferon. Semin Virol 8:409–418 [View Article]
    [Google Scholar]
  228. Smith V. P., Bryant N. A., Alcamí A. 2000; Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J Gen Virol 81:1223–1230[PubMed]
    [Google Scholar]
  229. Smith G. L., Vanderplasschen A., Law M. 2002; The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 83:2915–2931[PubMed]
    [Google Scholar]
  230. Soulat D., Burckstummer T., Westermayer S., Goncalves A., Bauch A., Stefanovic A., Hantschel O., Bennett K. L., Decker T., Superti-Furga G. 2008; The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J 27:2135–2146 [View Article][PubMed]
    [Google Scholar]
  231. Spriggs M. K., Hruby D. E., Maliszewski C. R., Pickup D. J., Sims J. E., Buller R. M., VanSlyke J. 1992; Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71:145–152 [View Article][PubMed]
    [Google Scholar]
  232. Stack J., Haga I. R., Schröder M., Bartlett N. W., Maloney G., Reading P. C., Fitzgerald K. A., Smith G. L., Bowie A. G. 2005; Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201:1007–1018 [View Article][PubMed]
    [Google Scholar]
  233. Staib C., Kisling S., Erfle V., Sutter G. 2005; Inactivation of the viral interleukin 1beta receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. J Gen Virol 86:1997–2006 [View Article][PubMed]
    [Google Scholar]
  234. Stark G. R., Darnell J. E. Jr 2012; The JAK-STAT pathway at twenty. Immunity 36:503–514 [View Article][PubMed]
    [Google Scholar]
  235. Sumner R. P., Ren H., Smith G. L. 2013; Deletion of immunomodulator C6 from vaccinia virus strain Western Reserve enhances virus immunogenicity and vaccine efficacy. J Gen Virol 94:1121–1126 [View Article][PubMed]
    [Google Scholar]
  236. Sutter G., Moss B. 1992; Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc Natl Acad Sci U S A 89:10847–10851 [View Article][PubMed]
    [Google Scholar]
  237. Symons J. A., Alcamí A., Smith G. L. 1995; Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81:551–560 [View Article][PubMed]
    [Google Scholar]
  238. Symons J. A., Adams E., Tscharke D. C., Reading P. C., Waldmann H., Smith G. L. 2002a; The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model. J Gen Virol 83:2833–2844[PubMed]
    [Google Scholar]
  239. Symons J. A., Tscharke D. C., Price N., Smith G. L. 2002b; A study of the vaccinia virus interferon-γ receptor and its contribution to virus virulence. J Gen Virol 83:1953–1964[PubMed]
    [Google Scholar]
  240. Tait S. W., Green D. R. 2010; Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632 [View Article][PubMed]
    [Google Scholar]
  241. Takahashi-Nishimaki F., Funahashi S., Miki K., Hashizume S., Sugimoto M. 1991; Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. Virology 181:158–164 [View Article][PubMed]
    [Google Scholar]
  242. Tanaka-Kataoka M., Kunikata T., Takayama S., Iwaki K., Ohashi K., Ikeda M., Kurimoto M. 1999; In vivo antiviral effect of interleukin 18 in a mouse model of vaccinia virus infection. Cytokine 11:593–599 [View Article][PubMed]
    [Google Scholar]
  243. Tardif J. C., L’Allier P. L., Grégoire J., Ibrahim R., McFadden G., Kostuk W., Knudtson M., Labinaz M., Waksman R. other authors 2010; A randomized controlled, phase 2 trial of the viral serpin Serp-1 in patients with acute coronary syndromes undergoing percutaneous coronary intervention. Circ Cardiovasc Interv 3:543–548 [View Article][PubMed]
    [Google Scholar]
  244. Tartaglia J., Perkus M. E., Taylor J., Norton E. K., Audonnet J. C., Cox W. I., Davis S. W., van der Hoeven J., Meignier B. other authors 1992; NYVAC: a highly attenuated strain of vaccinia virus. Virology 188:217–232 [View Article][PubMed]
    [Google Scholar]
  245. Thacore H. R., Youngner J. S. 1973; Rescue of vesicular stomatitis virus from interferon-induced resistance by superinfection with vaccinia virus. I. Rescue in cell cultures from different species. Virology 56:505–511 [View Article][PubMed]
    [Google Scholar]
  246. Thorne S. H. 2011; Immunotherapeutic potential of oncolytic vaccinia virus. Immunol Res 50:286–293 [View Article][PubMed]
    [Google Scholar]
  247. Tscharke D. C., Smith G. L. 1999; A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. J Gen Virol 80:2751–2755[PubMed]
    [Google Scholar]
  248. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83:1977–1986[PubMed]
    [Google Scholar]
  249. Unterholzner L., Sumner R. P., Baran M., Ren H., Mansur D. S., Bourke N. M., Randow F., Smith G. L., Bowie A. G. 2011; Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7. PLoS Pathog 7:e1002247 [View Article][PubMed]
    [Google Scholar]
  250. Upton C., Macen J. L., Wishart D. S., McFadden G. 1990; Myxoma virus and malignant rabbit fibroma virus encode a serpin-like protein important for virus virulence. Virology 179:618–631 [View Article][PubMed]
    [Google Scholar]
  251. Upton C., Mossman K., McFadden G. 1992; Encoding of a homolog of the IFN-gamma receptor by myxoma virus. Science 258:1369–1372 [View Article][PubMed]
    [Google Scholar]
  252. Valentine R., Smith G. L. 2010; Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3. J Gen Virol 91:2221–2229 [View Article][PubMed]
    [Google Scholar]
  253. van den Broek M. F., Muller U., Huang S., Aguet M., Zinkernagel R. M. 1995; Antiviral defense in mice lacking both alpha/beta and gamma interferon receptors. J Virol 69:4792–4796[PubMed]
    [Google Scholar]
  254. Vanderplasschen A., Mathew E., Hollinshead M., Sim R. B., Smith G. L. 1998; Extracellular enveloped vaccinia virus is resistant to complement because of incorporation of host complement control proteins into its envelope. Proc Natl Acad Sci U S A 95:7544–7549 [View Article][PubMed]
    [Google Scholar]
  255. Verardi P. H., Jones L. A., Aziz F. H., Ahmad S., Yilma T. D. 2001; Vaccinia virus vectors with an inactivated gamma interferon receptor homolog gene (B8R) are attenuated In vivo without a concomitant reduction in immunogenicity. J Virol 75:11–18 [View Article][PubMed]
    [Google Scholar]
  256. Waibler Z., Anzaghe M., Frenz T., Schwantes A., Pohlmann C., Ludwig H., Palomo-Otero M., Alcamí A., Sutter G., Kalinke U. 2009; Vaccinia virus-mediated inhibition of type I interferon responses is a multifactorial process involving the soluble type I interferon receptor B18 and intracellular components. J Virol 83:1563–1571 [View Article][PubMed]
    [Google Scholar]
  257. Walsh S. R., Dolin R. 2011; Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. Expert Rev Vaccines 10:1221–1240 [View Article][PubMed]
    [Google Scholar]
  258. Wang Z., Choi M. K., Ban T., Yanai H., Negishi H., Lu Y., Tamura T., Takaoka A., Nishikura K., Taniguchi T. 2008; Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci U S A 105:5477–5482 [View Article][PubMed]
    [Google Scholar]
  259. Wang L. C., Lynn R. C., Cheng G., Alexander E., Kapoor V., Moon E. K., Sun J., Fridlender Z. G., Isaacs S. N. other authors 2012; Treating tumors with a vaccinia virus expressing IFNβ illustrates the complex relationships between oncolytic ability and immunogenicity. Mol Ther 20:736–748 [View Article][PubMed]
    [Google Scholar]
  260. Wasilenko S. T., Stewart T. L., Meyers A. F., Barry M. 2003; Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proc Natl Acad Sci U S A 100:14345–14350 [View Article][PubMed]
    [Google Scholar]
  261. Wasilenko S. T., Banadyga L., Bond D., Barry M. 2005; The vaccinia virus F1L protein interacts with the proapoptotic protein Bak and inhibits Bak activation. J Virol 79:14031–14043 [View Article][PubMed]
    [Google Scholar]
  262. Wathelet M. G., Lin C. H., Parekh B. S., Ronco L. V., Howley P. M., Maniatis T. 1998; Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol Cell 1:507–518 [View Article][PubMed]
    [Google Scholar]
  263. Whitaker-Dowling P., Youngner J. S. 1983; Vaccinia rescue of VSV from interferon-induced resistance: reversal of translation block and inhibition of protein kinase activity. Virology 131:128–136 [View Article][PubMed]
    [Google Scholar]
  264. Wilcock D., Duncan S. A., Traktman P., Zhang W. H., Smith G. L. 1999; The vaccinia virus A4OR gene product is a nonstructural, type II membrane glycoprotein that is expressed at the cell surface. J Gen Virol 80:2137–2148[PubMed]
    [Google Scholar]
  265. Williams K. J., Wilson E., Davidson C. L., Aguilar O. A., Fu L., Carlyle J. R., Burshtyn D. N. 2012; Poxvirus infection-associated downregulation of C-type lectin-related-b prevents NK cell inhibition by NK receptor protein-1B. J Immunol 188:4980–4991 [View Article][PubMed]
    [Google Scholar]
  266. Williamson J. D., Reith R. W., Jeffrey L. J., Arrand J. R., Mackett M. 1990; Biological characterization of recombinant vaccinia viruses in mice infected by the respiratory route. J Gen Virol 71:2761–2767 [View Article][PubMed]
    [Google Scholar]
  267. Wolffe E. J., Isaacs S. N., Moss B. 1993; Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination. J Virol 67:4732–4741[PubMed]
    [Google Scholar]
  268. Wyatt L. S., Earl P. L., Eller L. A., Moss B. 2004; Highly attenuated smallpox vaccine protects mice with and without immune deficiencies against pathogenic vaccinia virus challenge. Proc Natl Acad Sci U S A 101:4590–4595 [View Article][PubMed]
    [Google Scholar]
  269. Wyatt L. S., Earl P. L., Vogt J., Eller L. A., Chandran D., Liu J., Robinson H. L., Moss B. 2008; Correlation of immunogenicities and in vitro expression levels of recombinant modified vaccinia virus Ankara HIV vaccines. Vaccine 26:486–493 [View Article][PubMed]
    [Google Scholar]
  270. Xu R., Johnson A. J., Liggitt D., Bevan M. J. 2004; Cellular and humoral immunity against vaccinia virus infection of mice. J Immunol 172:6265–6271[PubMed] [CrossRef]
    [Google Scholar]
  271. Xue X., Lu Q., Wei H., Wang D., Chen D., He G., Huang L., Wang H., Wang X. 2011; Structural basis of chemokine sequestration by CrmD, a poxvirus-encoded tumor necrosis factor receptor. PLoS Pathog 7:e1002162 [View Article][PubMed]
    [Google Scholar]
  272. Yewdell J. W., Bennink J. R., Smith G. L., Moss B. 1985; Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 82:1785–1789 [View Article][PubMed]
    [Google Scholar]
  273. Zhang L., Derider M., McCornack M. A., Jao S. C., Isern N., Ness T., Moyer R. 2006; Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1β. Proc Natl Acad Sci U S A 103:13985–13990 [View Article][PubMed]
    [Google Scholar]
  274. Zhao C., Denison C., Huibregtse J. M., Gygi S., Krug R. M. 2005; Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc Natl Acad Sci U S A 102:10200–10205 [View Article][PubMed]
    [Google Scholar]
  275. Zhou Q., Snipas S., Orth K., Muzio M., Dixit V. M., Salvesen G. S. 1997; Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J Biol Chem 272:7797–7800 [View Article][PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.055921-0
Loading
/content/journal/jgv/10.1099/vir.0.055921-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error