1887

Abstract

Sphingosine kinase 1 (SphK1) is a lipid kinase with important roles including regulation of cell survival. We have previously shown reduced SphK1 activity in cells with an established dengue virus type-2 (DENV-2) infection. In this study, we examined the effect of alterations in SphK1 activity on DENV-2 replication and cell death and determined the mechanisms of the reduction in SphK1 activity. Chemical inhibition or overexpression of SphK1 after established DENV-2 infection had no effect on infectious DENV-2 production, although inhibition of SphK1 resulted in enhanced DENV-2-induced cell death. Reduced SphK1 activity was observed in multiple cell types, regardless of the ability of DENV-2 infection to be cytopathic, and was mediated by a post-translational mechanism. Unlike bovine viral diarrhea virus, where SphK1 activity is decreased by the NS3 protein, SphK1 activity was not affected by DENV-2 NS3 but, instead, was reduced by expression of the terminal 396 bases of the 3′ UTR of DENV-2 RNA. We have previously shown that eukaryotic elongation factor 1A (eEF1A) is a direct activator of SphK1 and here DENV-2 RNA co-localized and co-precipitated with eEF1A from infected cells. We propose that the reduction in SphK1 activity late in DENV-2-infected cells is a consequence of DENV-2 out-competing SphK1 for eEF1A binding and hijacking cellular eEF1A for its own replication strategy, rather than a specific host or virus-induced change in SphK1 to modulate viral replication. Nonetheless, reduced SphK1 activity may have important consequences for survival or death of the infected cell.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.055616-0
2013-11-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/11/2437.html?itemId=/content/journal/jgv/10.1099/vir.0.055616-0&mimeType=html&fmt=ahah

References

  1. Alvarez S. E., Harikumar K. B., Hait N. C., Allegood J., Strub G. M., Kim E. Y., Maceyka M., Jiang H., Luo C.. & other authors ( 2010;). Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. . Nature 465:, 1084–1088. [CrossRef][PubMed]
    [Google Scholar]
  2. Barr R. K., Lynn H. E., Moretti P. A., Khew-Goodall Y., Pitson S. M.. ( 2008;). Deactivation of sphingosine kinase 1 by protein phosphatase 2A. . J Biol Chem 283:, 34994–35002. [CrossRef][PubMed]
    [Google Scholar]
  3. Bhuvanakantham R., Li J., Tan T. T., Ng M. L.. ( 2010;). Human Sec3 protein is a novel transcriptional and translational repressor of flavivirus. . Cell Microbiol 12:, 453–472. [CrossRef][PubMed]
    [Google Scholar]
  4. Blackwell J. L., Brinton M. A.. ( 1997;). Translation elongation factor-1 alpha interacts with the 3′ stem-loop region of West Nile virus genomic RNA. . J Virol 71:, 6433–6444.[PubMed]
    [Google Scholar]
  5. Carr J. M., Hocking H., Bunting K., Wright P. J., Davidson A., Gamble J., Burrell C. J., Li P.. ( 2003;). Supernatants from dengue virus type-2 infected macrophages induce permeability changes in endothelial cell monolayers. . J Med Virol 69:, 521–528. [CrossRef][PubMed]
    [Google Scholar]
  6. Carr J. M., Mahalingam S., Bonder C. S., Pitson S. M.. ( 2013;). Sphingosine kinase 1 in viral infections. . Rev Med Virol 23:, 73–84. [CrossRef][PubMed]
    [Google Scholar]
  7. Chan H., Pitson S. M.. ( 2013;). Post-translational regulation of sphingosine kinases. . Biochim Biophys Acta 1831:, 147–156. [CrossRef][PubMed]
    [Google Scholar]
  8. Chen Y. C., Wang S. Y.. ( 2002;). Activation of terminally differentiated human monocytes/macrophages by dengue virus: productive infection, hierarchical production of innate cytokines and chemokines, and the synergistic effect of lipopolysaccharide. . J Virol 76:, 9877–9887. [CrossRef][PubMed]
    [Google Scholar]
  9. Chen H. C., Hofman F. M., Kung J. T., Lin Y. D., Wu-Hsieh B. A.. ( 2007;). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. . J Virol 81:, 5518–5526. [CrossRef][PubMed]
    [Google Scholar]
  10. Clyde K., Kyle J. L., Harris E.. ( 2006;). Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. . J Virol 80:, 11418–11431. [CrossRef][PubMed]
    [Google Scholar]
  11. Davis W. G., Blackwell J. L., Shi P. Y., Brinton M. A.. ( 2007;). Interaction between the cellular protein eEF1A and the 3′-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. . J Virol 81:, 10172–10187. [CrossRef][PubMed]
    [Google Scholar]
  12. Diamond D. L., Syder A. J., Jacobs J. M., Sorensen C. M., Walters K. A., Proll S. C., McDermott J. E., Gritsenko M. A., Zhang Q.. & other authors ( 2010;). Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. . PLoS Pathog 6:, e1000719. [CrossRef][PubMed]
    [Google Scholar]
  13. Funk A., Truong K., Nagasaki T., Torres S., Floden N., Balmori Melian E., Edmonds J., Dong H., Shi P. Y., Khromykh A. A.. ( 2010;). RNA structures required for production of subgenomic flavivirus RNA. . J Virol 84:, 11407–11417. [CrossRef][PubMed]
    [Google Scholar]
  14. Gualano R. C., Pryor M. J., Cauchi M. R., Wright P. J., Davidson A. D.. ( 1998;). Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. . J Gen Virol 79:, 437–446.[PubMed]
    [Google Scholar]
  15. Halstead S. B.. ( 2007;). Dengue. . Lancet 370:, 1644–1652. [CrossRef][PubMed]
    [Google Scholar]
  16. Hannun Y. A., Obeid L. M.. ( 2008;). Principles of bioactive lipid signalling: lessons from sphingolipids. . Nat Rev Mol Cell Biol 9:, 139–150. [CrossRef][PubMed]
    [Google Scholar]
  17. Heaton N. S., Randall G.. ( 2011;). Dengue virus and autophagy. . Viruses 3:, 1332–1341. [CrossRef][PubMed]
    [Google Scholar]
  18. Heaton N. S., Perera R., Berger K. L., Khadka S., Lacount D. J., Kuhn R. J., Randall G.. ( 2010;). Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. . Proc Natl Acad Sci U S A 107:, 17345–17350. [CrossRef][PubMed]
    [Google Scholar]
  19. Helbig K. J., Lau D. T., Semendric L., Harley H. A., Beard M. R.. ( 2005;). Analysis of ISG expression in chronic hepatitis C identifies viperin as a potential antiviral effector. . Hepatology 42:, 702–710. [CrossRef][PubMed]
    [Google Scholar]
  20. Hirata Y., Ikeda K., Sudoh M., Tokunaga Y., Suzuki A., Weng L., Ohta M., Tobita Y., Okano K.. & other authors ( 2012;). Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis. . PLoS Pathog 8:, e1002860. [CrossRef][PubMed]
    [Google Scholar]
  21. Hober D., Poli L., Roblin B., Gestas P., Chungue E., Granic G., Imbert P., Pecarere J. L., Vergez-Pascal R.. & other authors ( 1993;). Serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in dengue-infected patients. . Am J Trop Med Hyg 48:, 324–331.[PubMed]
    [Google Scholar]
  22. Jarman K. E., Moretti P. A., Zebol J. R., Pitson S. M.. ( 2010;). Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. . J Biol Chem 285:, 483–492. [CrossRef][PubMed]
    [Google Scholar]
  23. Leclercq T. M., Pitson S. M.. ( 2006;). Cellular signalling by sphingosine kinase and sphingosine 1-phosphate. . IUBMB Life 58:, 467–472. [CrossRef][PubMed]
    [Google Scholar]
  24. Leclercq T. M., Moretti P. A., Vadas M. A., Pitson S. M.. ( 2008;). Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. . J Biol Chem 283:, 9606–9614. [CrossRef][PubMed]
    [Google Scholar]
  25. Leclercq T. M., Moretti P. A., Pitson S. M.. ( 2011;). Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. . Oncogene 30:, 372–378. [CrossRef][PubMed]
    [Google Scholar]
  26. Li H., Lin X.. ( 2008;). Positive and negative signaling components involved in TNFα-induced NF-κB activation. . Cytokine 41:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  27. Li D., Wei T., Abbott C. M., Harrich D.. ( 2013;). The unexpected roles of eukaryotic translation elongation factors in RNA virus replication and pathogenesis. . Microbiol Mol Biol Rev 77:, 253–266. [CrossRef][PubMed]
    [Google Scholar]
  28. Loveridge C., Tonelli F., Leclercq T., Lim K. G., Long J. S., Berdyshev E., Tate R. J., Natarajan V., Pitson S. M.. & other authors ( 2010;). The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. . J Biol Chem 285:, 38841–38852. [CrossRef][PubMed]
    [Google Scholar]
  29. Maceyka M., Milstien S., Spiegel S.. ( 2009;). Sphingosine-1-phosphate: the Swiss army knife of sphingolipid signaling. . J Lipid Res 50: (Suppl), S272–S276. [CrossRef][PubMed]
    [Google Scholar]
  30. Machesky N. J., Zhang G., Raghavan B., Zimmerman P., Kelly S. L., Merrill A. H. Jr, Waldman W. J., Van Brocklyn J. R., Trgovcich J.. ( 2008;). Human cytomegalovirus regulates bioactive sphingolipids. . J Biol Chem 283:, 26148–26160. [CrossRef][PubMed]
    [Google Scholar]
  31. MacPherson J. I., Sidders B., Wieland S., Zhong J., Targett-Adams P., Lohmann V., Backes P., Delpuech-Adams O., Chisari F.. & other authors ( 2011;). An integrated transcriptomic and meta-analysis of hepatoma cells reveals factors that influence susceptibility to HCV infection. . PLoS ONE 6:, e25584. [CrossRef][PubMed]
    [Google Scholar]
  32. Martina B. E., Koraka P., Osterhaus A. D.. ( 2009;). Dengue virus pathogenesis: an integrated view. . Clin Microbiol Rev 22:, 564–581. [CrossRef][PubMed]
    [Google Scholar]
  33. Monick M. M., Cameron K., Powers L. S., Butler N. S., McCoy D., Mallampalli R. K., Hunninghake G. W.. ( 2004;). Sphingosine kinase mediates activation of extracellular signal-related kinase and Akt by respiratory syncytial virus. . Am J Respir Cell Mol Biol 30:, 844–852. [CrossRef][PubMed]
    [Google Scholar]
  34. Perera R., Riley C., Isaac G., Hopf-Jannasch A. S., Moore R. J., Weitz K. W., Pasa-Tolic L., Metz T. O., Adamec J., Kuhn R. J.. ( 2012;). Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. . PLoS Pathog 8:, e1002584. [CrossRef][PubMed]
    [Google Scholar]
  35. Pham D. H., Moretti P. A., Goodall G. J., Pitson S. M.. ( 2008;). Attenuation of leakiness in doxycycline-inducible expression via incorporation of 3′ AU-rich mRNA destabilizing elements. . Biotechniques 45:, 155–162. [CrossRef][PubMed]
    [Google Scholar]
  36. Pitman M. R., Pitson S. M.. ( 2010;). Inhibitors of the sphingosine kinase pathway as potential therapeutics. . Curr Cancer Drug Targets 10:, 354–367. [CrossRef][PubMed]
    [Google Scholar]
  37. Pitman M. R., Barr R. K., Gliddon B. L., Magarey A. M., Moretti P. A., Pitson S. M.. ( 2011;). A critical role for the protein phosphatase 2A B′α regulatory subunit in dephosphorylation of sphingosine kinase 1. . Int J Biochem Cell Biol 43:, 342–347. [CrossRef][PubMed]
    [Google Scholar]
  38. Pitman M. R., Pham D. H., Pitson S. M.. ( 2012;). Isoform-selective assays for sphingosine kinase activity. . Methods Mol Biol 874:, 21–31. [CrossRef][PubMed]
    [Google Scholar]
  39. Pitson S. M.. ( 2011;). Regulation of sphingosine kinase and sphingolipid signaling. . Trends Biochem Sci 36:, 97–107. [CrossRef][PubMed]
    [Google Scholar]
  40. Pitson S. M., Moretti P. A., Zebol J. R., Xia P., Gamble J. R., Vadas M. A., D’Andrea R. J., Wattenberg B. W.. ( 2000;). Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation. A dominant-negative sphingosine kinase. . J Biol Chem 275:, 33945–33950. [CrossRef][PubMed]
    [Google Scholar]
  41. Pitson S. M., Moretti P. A., Zebol J. R., Zareie R., Derian C. K., Darrow A. L., Qi J., D’Andrea R. J., Bagley C. J.. & other authors ( 2002;). The nucleotide-binding site of human sphingosine kinase 1. . J Biol Chem 277:, 49545–49553. [CrossRef][PubMed]
    [Google Scholar]
  42. Pitson S. M., Moretti P. A., Zebol J. R., Lynn H. E., Xia P., Vadas M. A., Wattenberg B. W.. ( 2003;). Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. . EMBO J 22:, 5491–5500. [CrossRef][PubMed]
    [Google Scholar]
  43. Pryor M. J., Carr J. M., Hocking H., Davidson A. D., Li P., Wright P. J.. ( 2001;). Replication of dengue virus type 2 in human monocyte-derived macrophages: comparisons of isolates and recombinant viruses with substitutions at amino acid 390 in the envelope glycoprotein. . Am J Trop Med Hyg 65:, 427–434.[PubMed]
    [Google Scholar]
  44. Rothman A. L.. ( 2011;). Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. . Nat Rev Immunol 11:, 532–543. [CrossRef][PubMed]
    [Google Scholar]
  45. Seo Y. J., Blake C., Alexander S., Hahm B.. ( 2010;). Sphingosine 1-phosphate-metabolizing enzymes control influenza virus propagation and viral cytopathogenicity. . J Virol 84:, 8124–8131. [CrossRef][PubMed]
    [Google Scholar]
  46. Shresta S., Sharar K. L., Prigozhin D. M., Beatty P. R., Harris E.. ( 2006;). Murine model for dengue virus-induced lethal disease with increased vascular permeability. . J Virol 80:, 10208–10217. [CrossRef][PubMed]
    [Google Scholar]
  47. Simmons C. P., Farrar J. J., van Vinh Chau N., Wills B.. ( 2012;). Dengue. . N Engl J Med 366:, 1423–1432. [CrossRef][PubMed]
    [Google Scholar]
  48. Takabe K., Paugh S. W., Milstien S., Spiegel S.. ( 2008;). “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. . Pharmacol Rev 60:, 181–195. [CrossRef][PubMed]
    [Google Scholar]
  49. Vandermeeren A. M., Gómez C. E., Patiño C., Domingo-Gil E., Guerra S., González J. M., Esteban M.. ( 2008;). Subcellular forms and biochemical events triggered in human cells by HCV polyprotein expression from a viral vector. . Virol J 5:, 102. [CrossRef][PubMed]
    [Google Scholar]
  50. Warren K., Wei T., Li D., Qin F., Warrilow D., Lin M. H., Sivakumaran H., Apolloni A., Abbott C. M.. & other authors ( 2012;). Eukaryotic elongation factor 1 complex subunits are critical HIV-1 reverse transcription cofactors. . Proc Natl Acad Sci U S A 109:, 9587–9592. [CrossRef][PubMed]
    [Google Scholar]
  51. Wati S., Li P., Burrell C. J., Carr J. M.. ( 2007;). Dengue virus (DV) replication in monocyte-derived macrophages is not affected by tumor necrosis factor alpha (TNF-α), and DV infection induces altered responsiveness to TNF-α stimulation. . J Virol 81:, 10161–10171. [CrossRef][PubMed]
    [Google Scholar]
  52. Wati S., Rawlinson S. M., Ivanov R. A., Dorstyn L., Beard M. R., Jans D. A., Pitson S. M., Burrell C. J., Li P., Carr J. M.. ( 2011;). Tumour necrosis factor alpha (TNF-α) stimulation of cells with established dengue virus type 2 infection induces cell death that is accompanied by a reduced ability of TNF-α to activate nuclear factor κB and reduced sphingosine kinase-1 activity. . J Gen Virol 92:, 807–818. [CrossRef][PubMed]
    [Google Scholar]
  53. Wattenberg B. W., Pitson S. M., Raben D. M.. ( 2006;). The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function. . J Lipid Res 47:, 1128–1139. [CrossRef][PubMed]
    [Google Scholar]
  54. Xia P., Wang L., Moretti P. A., Albanese N., Chai F., Pitson S. M., D’Andrea R. J., Gamble J. R., Vadas M. A.. ( 2002;). Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-α signaling. . J Biol Chem 277:, 7996–8003. [CrossRef][PubMed]
    [Google Scholar]
  55. Yamane D., Zahoor M. A., Mohamed Y. M., Azab W., Kato K., Tohya Y., Akashi H.. ( 2009;). Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. . J Biol Chem 284:, 13648–13659. [CrossRef][PubMed]
    [Google Scholar]
  56. Yen Y. T., Chen H. C., Lin Y. D., Shieh C. C., Wu-Hsieh B. A.. ( 2008;). Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. . J Virol 82:, 12312–12324. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.055616-0
Loading
/content/journal/jgv/10.1099/vir.0.055616-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error