1887

Abstract

The high mortality associated with the novel Middle East respiratory syndrome coronavirus (MERS-CoV) has raised questions about the possible role of a cytokine storm in its pathogenesis. Although recent studies showed that MERS-CoV infection is associated with an attenuated IFN response, no induction of inflammatory cytokines was demonstrated during the early phase of infection. To study both early and late cytokine responses associated with MERS-CoV infection, we measured the mRNA levels of eight cytokine genes [TNF-α, IL-1β, IL-6, IL-8, IFN-β, monocyte chemotactic protein-1, transforming growth factor-β and IFN-γ-induced protein (IP)-10] in cell lysates of polarized airway epithelial Calu-3 cells infected with MERS-CoV or severe acute respiratory syndrome (SARS)-CoV up to 30 h post-infection. Among the eight cytokine genes, IL-1β, IL-6 and IL-8 induced by MERS-CoV were markedly higher than those induced by SARS-CoV at 30 h, whilst TNF-α, IFN-β and IP-10 induced by SARS-CoV were markedly higher than those induced by MERS-CoV at 24 and 30 h in infected Calu-3 cells. The activation of IL-8 and attenuated IFN-β response by MERS-CoV were also confirmed by protein measurements in the culture supernatant when compared with SARS-CoV and Sendai virus. To further confirm the attenuated antiviral response, cytokine response was compared with human HCoV-229E in embryonal lung fibroblast HFL cells, which also revealed higher IFN-β and IP-10 levels induced by HCoV-229E than MERS-CoV at 24 and 30 h. Whilst our data supported recent findings that MERS-CoV elicits attenuated innate immunity, this represents the first report to demonstrate delayed proinflammatory cytokine induction by MERS-CoV. Our results provide insights into the pathogenesis and treatment of MERS-CoV infections.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.055533-0
2013-12-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/12/2679.html?itemId=/content/journal/jgv/10.1099/vir.0.055533-0&mimeType=html&fmt=ahah

References

  1. Albarrak A. M., Stephens G. M., Hewson R., Memish Z. A.. ( 2012;). Recovery from severe novel coronavirus infection. . Saudi Med J 33:, 1265–1269.[PubMed]
    [Google Scholar]
  2. Annan A., Baldwin H. J., Corman V. M., Klose S. M., Owusu M., Nkrumah E. E., Badu E. K., Anti P., Agbenyega O.. & other authors ( 2013;). Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. . Emerg Infect Dis 19:, 456–459. [CrossRef][PubMed]
    [Google Scholar]
  3. Arbour N., Ekandé S., Côté G., Lachance C., Chagnon F., Tardieu M., Cashman N. R., Talbot P. J.. ( 1999a;). Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E. . J Virol 73:, 3326–3337.[PubMed]
    [Google Scholar]
  4. Arbour N., Côté G., Lachance C., Tardieu M., Cashman N. R., Talbot P. J.. ( 1999b;). Acute and persistent infection of human neural cell lines by human coronavirus OC43. . J Virol 73:, 3338–3350.[PubMed]
    [Google Scholar]
  5. Bermingham A., Chand M. A., Brown C. S., Aarons E., Tong C., Langrish C., Hoschler K., Brown K., Galiano M.. & other authors ( 2012;). Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. . Euro Surveill 17:, 20290.[PubMed]
    [Google Scholar]
  6. Chan J. F. W., Chan K. H., Choi G. K. Y., To K. K. W., Tse H., Cai J. P., Yeung M. L., Cheng V. C. C., Chen H.. & other authors ( 2013a;). Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. . J Infect Dis 207:, 1743–1752. [CrossRef][PubMed]
    [Google Scholar]
  7. Chan R. W., Chan M. C., Agnihothram S., Chan L. L., Kuok D. I., Fong J. H., Guan Y., Poon L. L., Baric R. S.. & other authors ( 2013b;). Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. . J Virol 87:, 6604–6614. [CrossRef][PubMed]
    [Google Scholar]
  8. Cheung C. Y., Poon L. L., Ng I. H., Luk W., Sia S. F., Wu M. H., Chan K. H., Yuen K. Y., Gordon S.. & other authors ( 2005;). Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. . J Virol 79:, 7819–7826. [CrossRef][PubMed]
    [Google Scholar]
  9. de Groot R. J., Baker S. C., Baric R., Enjuanes L., Gorbalenya A., Holmes K. V., Perlman S., Poon L., Rottier P. J.. & other authors ( 2012;). Coronaviridae. . In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 806–828. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J... San Diego, CA:: Elsevier;.
    [Google Scholar]
  10. de Groot R. J., Baker S. C., Baric R. S., Brown C. S., Drosten C., Enjuanes L., Fouchier R. A., Galiano M., Gorbalenya A. E.. & other authors ( 2013;). Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. . J Virol 87:, 7790–7792. [CrossRef][PubMed]
    [Google Scholar]
  11. de Wilde A. H., Raj V. S., Oudshoorn D., Bestebroer T. M., van Nieuwkoop S., Limpens R. W., Posthuma C. C., van der Meer Y., Bárcena M.. & other authors ( 2013;). MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment. . J Gen Virol 94:, 1749–1760. [CrossRef][PubMed]
    [Google Scholar]
  12. Dijkman R., Jebbink M. F., Koekkoek S. M., Deijs M., Jónsdóttir H. R., Molenkamp R., Ieven M., Goossens H., Thiel V., van der Hoek L.. ( 2013;). Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism. . J Virol 87:, 6081–6090. [CrossRef][PubMed]
    [Google Scholar]
  13. Falzarano D., de Wit E., Martellaro C., Callison J., Munster V. J., Feldmann H.. ( 2013a;). Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. . Sci Rep 3:, 1686. [CrossRef][PubMed]
    [Google Scholar]
  14. Falzarano D., de Wit E., Rasmussen A. L., Feldmann F., Okumura A., Scott D. P., Brining D., Bushmaker T., Martellaro C.. & other authors ( 2013b;). Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. . Nat Med. doi:10.1038/nm.3362 [Epub ahead of print]. [CrossRef][PubMed]
    [Google Scholar]
  15. Funk C. J., Wang J., Ito Y., Travanty E. A., Voelker D. R., Holmes K. V., Mason R. J.. ( 2012;). Infection of human alveolar macrophages by human coronavirus strain 229E. . J Gen Virol 93:, 494–503. [CrossRef][PubMed]
    [Google Scholar]
  16. Guan Y., Zheng B. J., He Y. Q., Liu X. L., Zhuang Z. X., Cheung C. L., Luo S. W., Li P. H., Zhang L. J.. & other authors ( 2003;). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. . Science 302:, 276–278. [CrossRef][PubMed]
    [Google Scholar]
  17. Herrewegh A. A., Smeenk I., Horzinek M. C., Rottier P. J., de Groot R. J.. ( 1998;). Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. . J Virol 72:, 4508–4514.[PubMed]
    [Google Scholar]
  18. Herzog P., Drosten C., Müller M. A.. ( 2008;). Plaque assay for human coronavirus NL63 using human colon carcinoma cells. . Virol J 5:, 138. [CrossRef][PubMed]
    [Google Scholar]
  19. Hon C. C., Lam T. Y., Shi Z. L., Drummond A. J., Yip C. W., Zeng F., Lam P. Y., Leung F. C.. ( 2008;). Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. . J Virol 82:, 1819–1826. [CrossRef][PubMed]
    [Google Scholar]
  20. Jia H. P., Look D. C., Shi L., Hickey M., Pewe L., Netland J., Farzan M., Wohlford-Lenane C., Perlman S., McCray P. B. Jr. ( 2005;). ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. . J Virol 79:, 14614–14621. [CrossRef][PubMed]
    [Google Scholar]
  21. Jiang S., Lu L., Du L., Debnath A. K.. ( 2013;). A predicted receptor-binding and critical neutralizing domain in S protein of the novel human coronavirus HCoV-EMC. . J Infect 66:, 464–466. [CrossRef][PubMed]
    [Google Scholar]
  22. Kaye M., Druce J., Tran T., Kostecki R., Chibo D., Morris J., Catton M., Birch C.. ( 2006;). SARS-associated coronavirus replication in cell lines. . Emerg Infect Dis 12:, 128–133. [CrossRef][PubMed]
    [Google Scholar]
  23. Kindler E., Jónsdóttir H. R., Muth D., Hamming O. J., Hartmann R., Rodriguez R., Geffers R., Fouchier R. A., Drosten C.. & other authors ( 2013;). Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. . MBio 4:, e00611-12. [CrossRef][PubMed]
    [Google Scholar]
  24. Ksiazek T. G., Erdman D., Goldsmith C. S., Zaki S. R., Peret T., Emery S., Tong S., Urbani C., Comer J. A.. & other authors ( 2003;). A novel coronavirus associated with severe acute respiratory syndrome. . N Engl J Med 348:, 1953–1966. [CrossRef][PubMed]
    [Google Scholar]
  25. Lai M. M., Cavanagh D.. ( 1997;). The molecular biology of coronaviruses. . Adv Virus Res 48:, 1–100. [CrossRef][PubMed]
    [Google Scholar]
  26. Lau S. K., Woo P. C., Li K. S., Huang Y., Tsoi H. W., Wong B. H., Wong S. S., Leung S. Y., Chan K. H., Yuen K. Y.. ( 2005;). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. . Proc Natl Acad Sci U S A 102:, 14040–14045. [CrossRef][PubMed]
    [Google Scholar]
  27. Lau S. K., Woo P. C., Yip C. C., Tse H., Tsoi H. W., Cheng V. C., Lee P., Tang B. S., Cheung C. H.. & other authors ( 2006;). Coronavirus HKU1 and other coronavirus infections in Hong Kong. . J Clin Microbiol 44:, 2063–2071. [CrossRef][PubMed]
    [Google Scholar]
  28. Lau S. K. P., Li K. S. M., Huang Y., Shek C. T., Tse H., Wang M., Choi G. K. Y., Xu H., Lam C. S. F.. & other authors ( 2010;). Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. . J Virol 84:, 2808–2819. [CrossRef][PubMed]
    [Google Scholar]
  29. Lau S. K. P., Lee P., Tsang A. K. L., Yip C. C. Y., Tse H., Lee R. A., So L. Y., Lau Y. L., Chan K. H.. & other authors ( 2011;). Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. . J Virol 85:, 11325–11337. [CrossRef][PubMed]
    [Google Scholar]
  30. Lau S. K. P., Li K. S. M., Tsang A. K. L., Lam C. S. F., Ahmed S., Chen H., Chan K. H., Woo P. C. Y., Yuen K. Y.. ( 2013;). Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of Pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. . J Virol 87:, 8638–8650. [CrossRef][PubMed]
    [Google Scholar]
  31. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J. H., Wang H., Crameri G., Hu Z.. & other authors ( 2005;). Bats are natural reservoirs of SARS-like coronaviruses. . Science 310:, 676–679. [CrossRef][PubMed]
    [Google Scholar]
  32. Mella C., Suarez-Arrabal M. C., Lopez S., Stephens J., Fernandez S., Hall M. W., Ramilo O., Mejias A.. ( 2013;). Innate immune dysfunction is associated with enhanced disease severity in infants with severe respiratory syncytial virus bronchiolitis. . J Infect Dis 207:, 564–573. [CrossRef][PubMed]
    [Google Scholar]
  33. Müller M. A., Raj V. S., Muth D., Meyer B., Kallies S., Smits S. L., Wollny R., Bestebroer T. M., Specht S.. & other authors ( 2012;). Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines. . MBio 3:, e00515-12. [CrossRef][PubMed]
    [Google Scholar]
  34. Munster V. J., de Wit E., Feldmann H.. ( 2013;). Pneumonia from human coronavirus in a macaque model. . N Engl J Med 368:, 1560–1562. [CrossRef][PubMed]
    [Google Scholar]
  35. Okabayashi T., Kariwa H., Yokota S., Iki S., Indoh T., Yokosawa N., Takashima I., Tsutsumi H., Fujii N.. ( 2006;). Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. . J Med Virol 78:, 417–424. [CrossRef][PubMed]
    [Google Scholar]
  36. Peiris J. S., Chu C. M., Cheng V. C., Chan K. S., Hung I. F., Poon L. L., Law K. I., Tang B. S., Hon T. Y.. & other authors ( 2003;). Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. . Lancet 361:, 1767–1772. [CrossRef][PubMed]
    [Google Scholar]
  37. Perlman S., Netland J.. ( 2009;). Coronaviruses post-SARS: update on replication and pathogenesis. . Nat Rev Microbiol 7:, 439–450. [CrossRef][PubMed]
    [Google Scholar]
  38. Poon L. L., Chan K. H., Wong O. K., Cheung T. K., Ng I., Zheng B., Seto W. H., Yuen K. Y., Guan Y., Peiris J. S.. ( 2004;). Detection of SARS coronavirus in patients with severe acute respiratory syndrome by conventional and real-time quantitative reverse transcription-PCR assays. . Clin Chem 50:, 67–72. [CrossRef][PubMed]
    [Google Scholar]
  39. Qian Z., Travanty E. A., Oko L., Edeen K., Berglund A., Wang J., Ito Y., Holmes K. V., Mason R.. ( 2013;). Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. . Am J Respir Cell Mol Biol 48:, 742–748. [CrossRef][PubMed]
    [Google Scholar]
  40. Raj V. S., Mou H., Smits S. L., Dekkers D. H., Müller M. A., Dijkman R., Muth D., Demmers J. A., Zaki A.. & other authors ( 2013;). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. . Nature 495:, 251–254. [CrossRef][PubMed]
    [Google Scholar]
  41. Sims A. C., Baric R. S., Yount B., Burkett S. E., Collins P. L., Pickles R. J.. ( 2005;). Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. . J Virol 79:, 15511–15524. [CrossRef][PubMed]
    [Google Scholar]
  42. Spiegel M., Pichlmair A., Martínez-Sobrido L., Cros J., García-Sastre A., Haller O., Weber F.. ( 2005;). Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. . J Virol 79:, 2079–2086. [CrossRef][PubMed]
    [Google Scholar]
  43. Tang B. S., Chan K. H., Cheng V. C., Woo P. C., Lau S. K., Lam C. C., Chan T. L., Wu A. K., Hung I. F.. & other authors ( 2005;). Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome coronavirus and human coronavirus 229E. . J Virol 79:, 6180–6193. [CrossRef][PubMed]
    [Google Scholar]
  44. van Boheemen S., de Graaf M., Lauber C., Bestebroer T. M., Raj V. S., Zaki A. M., Osterhaus A. D., Haagmans B. L., Gorbalenya A. E.. & other authors ( 2012;). Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. . MBio 3:, e00473-12. [CrossRef][PubMed]
    [Google Scholar]
  45. van Elden L. J., van Loon A. M., van Alphen F., Hendriksen K. A., Hoepelman A. I., van Kraaij M. G., Oosterheert J. J., Schipper P., Schuurman R., Nijhuis M.. ( 2004;). Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction. . J Infect Dis 189:, 652–657. [CrossRef][PubMed]
    [Google Scholar]
  46. Woo P. C., Lau S. K., Tsoi H. W., Huang Y., Poon R. W., Chu C. M., Lee R. A., Luk W. K., Wong G. K.. & other authors ( 2005;). Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia. . J Infect Dis 192:, 1898–1907. [CrossRef][PubMed]
    [Google Scholar]
  47. Woo P. C., Lau S. K., Yip C. C., Huang Y., Tsoi H. W., Chan K. H., Yuen K. Y.. ( 2006;). Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1. . J Virol 80:, 7136–7145. [CrossRef][PubMed]
    [Google Scholar]
  48. Woo P. C., Wang M., Lau S. K., Xu H., Poon R. W., Guo R., Wong B. H., Gao K., Tsoi H. W.. & other authors ( 2007;). Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. . J Virol 81:, 1574–1585. [CrossRef][PubMed]
    [Google Scholar]
  49. Woo P. C., Lau S. K., Lam C. S., Lai K. K., Huang Y., Lee P., Luk G. S., Dyrting K. C., Chan K. H., Yuen K. Y.. ( 2009;). Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. . J Virol 83:, 908–917. [CrossRef][PubMed]
    [Google Scholar]
  50. Woo P. C., Tung E. T., Chan K. H., Lau C. C., Lau S. K., Yuen K. Y.. ( 2010;). Cytokine profiles induced by the novel swine-origin influenza A/H1N1 virus: implications for treatment strategies. . J Infect Dis 201:, 346–353. [CrossRef][PubMed]
    [Google Scholar]
  51. Woo P. C., Lau S. K., Lam C. S., Lau C. C., Tsang A. K., Lau J. H., Bai R., Teng J. L., Tsang C. C.. & other authors ( 2012a;). Discovery of seven novel Mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus.. J Virol 86:, 3995–4008. [CrossRef][PubMed]
    [Google Scholar]
  52. Woo P. C., Lau S. K., Li K. S., Tsang A. K., Yuen K. Y.. ( 2012b;). Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5. . Emerg Microbes Infect 1:, e35. [CrossRef]
    [Google Scholar]
  53. World Health Organization ( 2013;). Global Alert and Response: Middle East respiratory syndrome coronavirus (MERS-CoV) – update. Geneva:: WHO;. http://www.who.int/csr/don/2013_09_07/en/index.html.
    [Google Scholar]
  54. Yeager C. L., Ashmun R. A., Williams R. K., Cardellichio C. B., Shapiro L. H., Look A. T., Holmes K. V.. ( 1992;). Human aminopeptidase N is a receptor for human coronavirus 229E. . Nature 357:, 420–422. [CrossRef][PubMed]
    [Google Scholar]
  55. Yoshikawa T., Hill T. E., Yoshikawa N., Popov V. L., Galindo C. L., Garner H. R., Peters C. J., Tseng C. T.. ( 2010;). Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection. . PLoS ONE 5:, e8729. [CrossRef][PubMed]
    [Google Scholar]
  56. Zaki A. M., van Boheemen S., Bestebroer T. M., Osterhaus A. D., Fouchier R. A.. ( 2012;). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. . N Engl J Med 367:, 1814–1820. [CrossRef][PubMed]
    [Google Scholar]
  57. Zeng Q., Langereis M. A., van Vliet A. L., Huizinga E. G., de Groot R. J.. ( 2008;). Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. . Proc Natl Acad Sci U S A 105:, 9065–9069. [CrossRef][PubMed]
    [Google Scholar]
  58. Zheng B. J., Chan K. W., Lin Y. P., Zhao G. Y., Chan C., Zhang H. J., Chen H. L., Wong S. S., Lau S. K.. & other authors ( 2008;). Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. . Proc Natl Acad Sci U S A 105:, 8091–8096. [CrossRef][PubMed]
    [Google Scholar]
  59. Zielecki F., Weber M., Eickmann M., Spiegelberg L., Zaki A. M., Matrosovich M., Becker S., Weber F.. ( 2013;). Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus. . J Virol 87:, 5300–5304. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.055533-0
Loading
/content/journal/jgv/10.1099/vir.0.055533-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error