1887

Abstract

Respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in children, especially in infants less than 1 year of age. There are currently no licensed vaccines against RSV. rA2ΔM2-2 is a promising live-attenuated vaccine candidate that is currently being evaluated in the clinic. Attenuation of rA2ΔM2-2 is achieved by a single deletion of the M2-2 gene, which disrupts the balance between viral transcription and replication. Whilst performing a manufacturing feasibility study in a serum-free adapted Vero cell line, differences in growth kinetics and cytopathic effect (CPE) were identified between two rA2ΔM2-2 vaccine candidates. Comparative sequence analysis identified four amino acid differences between the two vaccine viruses. Recombinant rA2ΔM2-2 viruses carrying each of the four amino acid differences identified a K66E mutation in the F fragment of the fusion (F) protein as the cause of the growth and CPE differences. Syncytium-formation experiments with RSV F protein carrying mutations at aa 66 suggested that a change in charge at this residue within the F fragment can have a significant impact on fusion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.055368-0
2013-12-01
2020-11-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/12/2627.html?itemId=/content/journal/jgv/10.1099/vir.0.055368-0&mimeType=html&fmt=ahah

References

  1. Bermingham A., Collins P. L. 1999; The M2-2 protein of human respiratory syncytial virus is a regulatory factor involved in the balance between RNA replication and transcription. Proc Natl Acad Sci U S A 96:11259–11264 [CrossRef][PubMed]
    [Google Scholar]
  2. Chang A., Hackett B., Winter C. C., Buchholz U. J., Dutch R. E. 2012; Potential electrostatic interactions in multiple regions affect human metapneumovirus F-mediated membrane fusion. J Virol 86:9843–9853 [CrossRef][PubMed]
    [Google Scholar]
  3. Cheng X., Zhou H., Tang R. S., Munoz M. G., Jin H. 2001; Chimeric subgroup A respiratory syncytial virus with the glycoproteins substituted by those of subgroup B and RSV without the M2-2 gene are attenuated in African green monkeys. Virology 283:59–68 [CrossRef][PubMed]
    [Google Scholar]
  4. Collins P. L., Melero J. A. 2011; Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 162:80–99 [CrossRef][PubMed]
    [Google Scholar]
  5. Connors M., Crowe J. E. Jr, Firestone C.-Y., Murphy B. R., Collins P. L. 1995; A cold-passaged, attenuated strain of human respiratory syncytial virus contains mutations in the F and L genes. Virology 208:478–484 [CrossRef][PubMed]
    [Google Scholar]
  6. Crim R. L., Audet S. A., Feldman S. A., Mostowski H. S., Beeler J. A. 2007; Identification of linear heparin-binding peptides derived from human respiratory syncytial virus fusion glycoprotein that inhibit infectivity. J Virol 81:261–271 [CrossRef][PubMed]
    [Google Scholar]
  7. Day N. D., Branigan P. J., Liu C., Gutshall L. L., Luo J., Melero J. A., Sarisky R. T., Del Vecchio A. M. 2006; Contribution of cysteine residues in the extracellular domain of the F protein of human respiratory syncytial virus to its function. Virol J 3:34 [CrossRef][PubMed]
    [Google Scholar]
  8. Feldman S. A., Audet S., Beeler J. A. 2000; The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J Virol 74:6442–6447 [CrossRef][PubMed]
    [Google Scholar]
  9. Gardner A. E., Dutch R. E. 2007; A conserved region in the F(2) subunit of paramyxovirus fusion proteins is involved in fusion regulation. J Virol 81:8303–8314 [CrossRef][PubMed]
    [Google Scholar]
  10. Hallak L. K., Spillmann D., Collins P. L., Peeples M. E. 2000a; Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol 74:10508–10513 [CrossRef][PubMed]
    [Google Scholar]
  11. Hallak L. K., Collins P. L., Knudson W., Peeples M. E. 2000b; Iduronic acid-containing glycosaminoglycans on target cells are required for efficient respiratory syncytial virus infection. Virology 271:264–275 [CrossRef][PubMed]
    [Google Scholar]
  12. Jin H., Cheng X., Zhou H. Z. Y., Li S., Seddiqui A. 2000; Respiratory syncytial virus that lacks open reading frame 2 of the M2 gene (M2-2) has altered growth characteristics and is attenuated in rodents. J Virol 74:74–82 [CrossRef][PubMed]
    [Google Scholar]
  13. Jin H., Cheng X., Traina-Dorge V. L., Park H. J., Zhou H., Soike K., Kemble G. 2003; Evaluation of recombinant respiratory syncytial virus gene deletion mutants in African green monkeys for their potential as live attenuated vaccine candidates. Vaccine 21:3647–3652 [CrossRef][PubMed]
    [Google Scholar]
  14. Johnson S., Oliver C., Prince G. A., Hemming V. G., Pfarr D. S., Wang S. C., Dormitzer M., O’Grady J., Koenig S. other authors 1997; Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J Infect Dis 176:1215–1224 [CrossRef][PubMed]
    [Google Scholar]
  15. Kapikian A. Z., Mitchell R. H., Chanock R. M., Shvedoff R. A., Stewart C. E. 1969; An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am J Epidemiol 89:405–421[PubMed]
    [Google Scholar]
  16. Karron R. A., Wright P. F., Belshe R. B., Thumar B., Casey R., Newman F., Polack F. P., Randolph V. B., Deatly A. other authors 2005; Identification of a recombinant live attenuated respiratory syncytial virus vaccine candidate that is highly attenuated in infants. J Infect Dis 191:1093–1104 [CrossRef][PubMed]
    [Google Scholar]
  17. Kaur J., Tang R. S., Spaete R. R., Schickli J. H. 2008; Optimization of plasmid-only rescue of highly attenuated and temperature-sensitive respiratory syncytial virus (RSV) vaccine candidates for human trials. J Virol Methods 153:196–202 [CrossRef][PubMed]
    [Google Scholar]
  18. Kim H. W., Canchola J. G., Brandt C. D., Pyles G., Chanock R. M., Jensen K., Parrott R. H. 1969; Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 89:422–434[PubMed]
    [Google Scholar]
  19. Martínez I., Melero J. A. 2000; Binding of human respiratory syncytial virus to cells: implication of sulfated cell surface proteoglycans. J Gen Virol 81:2715–2722[PubMed]
    [Google Scholar]
  20. McLellan J. S., Yang Y., Graham B. S., Kwong P. D. 2011; Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes. J Virol 85:7788–7796 [CrossRef][PubMed]
    [Google Scholar]
  21. McLellan J. S., Chen M., Leung S., Graepel K. W., Du X., Yang Y., Zhou T., Baxa U., Yasuda E. other authors 2013; Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 340:1113–1117 [CrossRef][PubMed]
    [Google Scholar]
  22. Nair H., Nokes D. J., Gessner B. D., Dherani M., Madhi S. A., Singleton R. J., O’Brien K. L., Roca A., Wright P. F. other authors 2010; Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375:1545–1555 [CrossRef][PubMed]
    [Google Scholar]
  23. Schickli J. H., Dubovsky F., Tang R. S. 2009; Challenges in developing a pediatric RSV vaccine. Hum Vaccin 5:582–591[PubMed] [CrossRef]
    [Google Scholar]
  24. Schlender J., Zimmer G., Herrler G., Conzelmann K. K. 2003; Respiratory syncytial virus (RSV) fusion protein subunit F2, not attachment protein G, determines the specificity of RSV infection. J Virol 77:4609–4616 [CrossRef][PubMed]
    [Google Scholar]
  25. Tayyari F., Marchant D., Moraes T. J., Duan W., Mastrangelo P., Hegele R. G. 2011; Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat Med 17:1132–1135 [CrossRef][PubMed]
    [Google Scholar]
  26. Teng M. N., Collins P. L. 1999; Altered growth characteristics of recombinant respiratory syncytial viruses which do not produce NS2 protein. J Virol 73:466–473[PubMed]
    [Google Scholar]
  27. Teng M. N., Whitehead S. S., Bermingham A., St Claire M., Elkins W. R., Murphy B. R., Collins P. L. 2000; Recombinant respiratory syncytial virus that does not express the NS1 or M2-2 protein is highly attenuated and immunogenic in chimpanzees. J Virol 74:9317–9321 [CrossRef][PubMed]
    [Google Scholar]
  28. Teng M. N., Whitehead S. S., Collins P. L. 2001; Contribution of the respiratory syncytial virus G glycoprotein and its secreted and membrane-bound forms to virus replication in vitro and in vivo. . Virology 289:283–296 [CrossRef][PubMed]
    [Google Scholar]
  29. Whitehead S. S., Juhasz K., Firestone C.-Y., Collins P. L., Murphy B. R. 1998; Recombinant respiratory syncytial virus (RSV) bearing a set of mutations from cold-passaged RSV is attenuated in chimpanzees. J Virol 72:4467–4471[PubMed]
    [Google Scholar]
  30. Wright P. F., Karron R. A., Belshe R. B., Shi J. R., Randolph V. B., Collins P. L., O’Shea A. F., Gruber W. C., Murphy B. R. 2007; The absence of enhanced disease with wild type respiratory syncytial virus infection occurring after receipt of live, attenuated, respiratory syncytial virus vaccines. Vaccine 25:7372–7378 [CrossRef][PubMed]
    [Google Scholar]
  31. Wu H., Pfarr D. S., Johnson S., Brewah Y. A., Woods R. M., Patel N. K., White W. I., Young J. F., Kiener P. A. 2007; Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J Mol Biol 368:652–665 [CrossRef][PubMed]
    [Google Scholar]
  32. Yuk I. H., Lin G. B., Ju H., Sifi I., Lam Y., Cortez A., Liebertz D., Berry J. M., Schwartz R. M. 2006; A serum-free Vero production platform for a chimeric virus vaccine candidate. Cytotechnology 51:183–192 [CrossRef][PubMed]
    [Google Scholar]
  33. Zhu Q., Patel N. K., McAuliffe J. M., Zhu W., Wachter L., McCarthy M. P., Suzich J. A. 2012; Natural polymorphisms and resistance-associated mutations in the fusion protein of respiratory syncytial virus (RSV): effects on RSV susceptibility to palivizumab. J Infect Dis 205:635–638 [CrossRef][PubMed]
    [Google Scholar]
  34. Zimmer G., Trotz I., Herrler G. 2001; N-glycans of F protein differentially affect fusion activity of human respiratory syncytial virus. J Virol 75:4744–4751 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.055368-0
Loading
/content/journal/jgv/10.1099/vir.0.055368-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error