1887

Abstract

The foot-and-mouth disease virus (FMDV) structural protein precursor, P1-2A, is cleaved by the virus-encoded 3C protease (3C) into the capsid proteins VP0, VP1 and VP3 (and 2A). In some systems, it is difficult to produce large amounts of these processed capsid proteins since 3C can be toxic for cells. The expression level of 3C activity has now been reduced relative to the P1-2A, and the effect on the yield of processed capsid proteins and their assembly into empty capsid particles within mammalian cells has been determined. Using a vaccinia-virus-based transient expression system, P1-2A (from serotypes O and A) and 3C were expressed from monocistronic cDNA cassettes as P1-2A-3C, or from dicistronic cassettes with the 3C expression dependent on a mutant FMDV internal ribosome entry site (IRES) (designated P1-2A-mIRES-3C). The effects of using a mutant 3C with reduced catalytic activity or using two different mutant IRES elements (the wt GNRA tetraloop sequence GCGA converted, in the cDNA, to GAGA or GTTA) were analysed. For both serotypes, the P1-2A-mIRES-3C construct containing the inefficient GTTA mutant IRES produced the highest amount of processed capsid proteins. These products self-assembled to form FMDV empty capsid particles, which have a related, but distinct, morphology (as determined by electron microscopy and reconstruction) from that determined previously by X-ray crystallography. The assembled empty capsids bind, in a divalent cation-dependent manner, to the RGD-dependent integrin αβ a cellular receptor for FMDV, and are recognized appropriately in serotype-specific antigen ELISAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.054122-0
2013-08-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/8/1769.html?itemId=/content/journal/jgv/10.1099/vir.0.054122-0&mimeType=html&fmt=ahah

References

  1. Abrams C. C. , King A. M. , Belsham G. J. . ( 1995; ). Assembly of foot-and-mouth disease virus empty capsids synthesized by a vaccinia virus expression system. . J Gen Virol 76:, 3089–3098. [CrossRef] [PubMed]
    [Google Scholar]
  2. Acharya R. , Fry E. , Stuart D. , Fox G. , Rowlands D. , Brown F. . ( 1989; ). The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. . Nature 337:, 709–716. [CrossRef] [PubMed]
    [Google Scholar]
  3. Alexandersen S. , Zhang Z. , Donaldson A. I. , Garland A. J. . ( 2003; ). The pathogenesis and diagnosis of foot-and-mouth disease. . J Comp Pathol 129:, 1–36. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ansardi D. C. , Porter D. C. , Morrow C. D. . ( 1992; ). Myristylation of poliovirus capsid precursor P1 is required for assembly of subviral particles. . J Virol 66:, 4556–4563.[PubMed]
    [Google Scholar]
  5. Armer H. , Moffat K. , Wileman T. , Belsham G. J. , Jackson T. , Duprex W. P. , Ryan M. , Monaghan P. . ( 2008; ). Foot-and-mouth disease virus, but not bovine enterovirus, targets the host cell cytoskeleton via the nonstructural protein 3Cpro . . J Virol 82:, 10556–10566. [CrossRef] [PubMed]
    [Google Scholar]
  6. Belsham G. J. . ( 2005; ). Translation and replication of FMDV RNA. . Curr Top Microbiol Immunol 288:, 43–70. [CrossRef] [PubMed]
    [Google Scholar]
  7. Belsham G. J. , McInerney G. M. , Ross-Smith N. . ( 2000; ). Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. . J Virol 74:, 272–280. [CrossRef] [PubMed]
    [Google Scholar]
  8. Belsham G. J. , Nielsen I. , Normann P. , Royall E. , Roberts L. O. . ( 2008; ). Monocistronic mRNAs containing defective hepatitis C virus-like picornavirus internal ribosome entry site elements in their 5′ untranslated regions are efficiently translated in cells by a cap-dependent mechanism. . RNA 14:, 1671–1680. [CrossRef] [PubMed]
    [Google Scholar]
  9. Birtley J. R. , Knox S. R. , Jaulent A. M. , Brick P. , Leatherbarrow R. J. , Curry S. . ( 2005; ). Crystal structure of foot-and-mouth disease virus 3C protease. New insights into catalytic mechanism and cleavage specificity. . J Biol Chem 280:, 11520–11527. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bøtner A. , Kakker N. K. , Barbezange C. , Berryman S. , Jackson T. , Belsham G. J. . ( 2011; ). Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus. . J Gen Virol 92:, 1141–1151. [CrossRef] [PubMed]
    [Google Scholar]
  11. Bouma A. , Elbers A. R. , Dekker A. , de Koeijer A. , Bartels C. , Vellema P. , van der Wal P. , van Rooij E. M. , Pluimers F. H. , de Jong M. C. . ( 2003; ). The foot-and-mouth disease epidemic in The Netherlands in 2001. . Prev Vet Med 57:, 155–166. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cao Y. , Lu Z. , Sun J. , Bai X. , Sun P. , Bao H. , Chen Y. , Guo J. , Li D. . & other authors ( 2009; ). Synthesis of empty capsid-like particles of Asia I foot-and-mouth disease virus in insect cells and their immunogenicity in guinea pigs. . Vet Microbiol 137:, 10–17. [CrossRef] [PubMed]
    [Google Scholar]
  13. Chow M. , Newman J. F. , Filman D. , Hogle J. M. , Rowlands D. J. , Brown F. . ( 1987; ). Myristylation of picornavirus capsid protein VP4 and its structural significance. . Nature 327:, 482–486. [CrossRef] [PubMed]
    [Google Scholar]
  14. Chung C. Y. , Chen C. Y. , Lin S. Y. , Chung Y. C. , Chiu H. Y. , Chi W. K. , Lin Y. L. , Chiang B. L. , Chen W. J. , Hu Y. C. . ( 2010; ). Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. . Vaccine 28:, 6951–6957. [CrossRef] [PubMed]
    [Google Scholar]
  15. Curry S. , Abrams C. C. , Fry E. , Crowther J. C. , Belsham G. J. , Stuart D. I. , King A. M. . ( 1995; ). Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. . J Virol 69:, 430–438.[PubMed]
    [Google Scholar]
  16. Curry S. , Fry E. , Blakemore W. , Abu-Ghazaleh R. , Jackson T. , King A. , Lea S. , Newman J. , Rowlands D. , Stuart D. . ( 1996; ). Perturbations in the surface structure of A22 Iraq foot-and-mouth disease virus accompanying coupled changes in host cell specificity and antigenicity. . Structure 4:, 135–145. [CrossRef] [PubMed]
    [Google Scholar]
  17. Curry S. , Fry E. , Blakemore W. , Abu-Ghazaleh R. , Jackson T. , King A. , Lea S. , Newman J. , Stuart D. . ( 1997; ). Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. . J Virol 71:, 9743–9752.[PubMed]
    [Google Scholar]
  18. DiCara D. , Burman A. , Clark S. , Berryman S. , Howard M. J. , Hart I. R. , Marshall J. F. , Jackson T. . ( 2008; ). Foot-and-mouth disease virus forms a highly stable, EDTA-resistant complex with its principal receptor, integrin alphavbeta6: implications for infectiousness. . J Virol 82:, 1537–1546. [CrossRef] [PubMed]
    [Google Scholar]
  19. Ellard F. M. , Drew J. , Blakemore W. E. , Stuart D. I. , King A. M. . ( 1999; ). Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. . J Gen Virol 80:, 1911–1918.[PubMed]
    [Google Scholar]
  20. Falk M. M. , Grigera P. R. , Bergmann I. E. , Zibert A. , Multhaup G. , Beck E. . ( 1990; ). Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. . J Virol 64:, 748–756.[PubMed]
    [Google Scholar]
  21. Fernández-Miragall O. , Martínez-Salas E. . ( 2003; ). Structural organization of a viral IRES depends on the integrity of the GNRA motif. . RNA 9:, 1333–1344. [CrossRef] [PubMed]
    [Google Scholar]
  22. Fernández-Miragall O. , López de Quinto S. , Martínez-Salas E. . ( 2009; ). Relevance of RNA structure for the activity of picornavirus IRES elements. . Virus Res 139:, 172–182. [CrossRef] [PubMed]
    [Google Scholar]
  23. Ferris N. P. , Abrescia N. G. , Stuart D. I. , Jackson T. , Burman A. , King D. P. , Paton D. J. . ( 2005; ). Utility of recombinant integrin αvβ6 as a capture reagent in immunoassays for the diagnosis of foot-and-mouth disease. . J Virol Methods 127:, 69–79. [CrossRef] [PubMed]
    [Google Scholar]
  24. Ferris N. P. , Grazioli S. , Hutchings G. H. , Brocchi E. . ( 2011; ). Validation of a recombinant integrin αvβ6/monoclonal antibody based antigen ELISA for the diagnosis of foot-and-mouth disease. . J Virol Methods 175:, 253–260. [CrossRef] [PubMed]
    [Google Scholar]
  25. Fry E. E. , Newman J. W. , Curry S. , Najjam S. , Jackson T. , Blakemore W. , Lea S. M. , Miller L. , Burman A. . & other authors ( 2005; ). Structure of foot-and-mouth disease virus serotype A10 61 alone and complexed with oligosaccharide receptor: receptor conservation in the face of antigenic variation. . J Gen Virol 86:, 1909–1920. [CrossRef] [PubMed]
    [Google Scholar]
  26. Fuerst T. R. , Niles E. G. , Studier F. W. , Moss B. . ( 1986; ). Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. . Proc Natl Acad Sci U S A 83:, 8122–8126. [CrossRef] [PubMed]
    [Google Scholar]
  27. Goodwin S. , Tuthill T. J. , Arias A. , Killington R. A. , Rowlands D. J. . ( 2009; ). Foot-and-mouth disease virus assembly: processing of recombinant capsid precursor by exogenous protease induces self-assembly of pentamers in vitro in a myristoylation-dependent manner. . J Virol 83:, 11275–11282. [CrossRef] [PubMed]
    [Google Scholar]
  28. Grubman M. J. , Baxt B. . ( 2004; ). Foot-and-mouth disease. . Clin Microbiol Rev 17:, 465–493. [CrossRef] [PubMed]
    [Google Scholar]
  29. Jackson T. , Ellard F. M. , Ghazaleh R. A. , Brookes S. M. , Blakemore W. E. , Corteyn A. H. , Stuart D. I. , Newman J. W. , King A. M. . ( 1996; ). Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. . J Virol 70:, 5282–5287.[PubMed]
    [Google Scholar]
  30. Jackson T. , Sheppard D. , Denyer M. , Blakemore W. , King A. M. . ( 2000; ). The epithelial integrin αvβ6 is a receptor for foot-and-mouth disease virus. . J Virol 74:, 4949–4956. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lohse L. , Jackson T. , Bøtner A. , Belsham G. J. . ( 2012; ). Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs. . Vet Res 43:, 46. [CrossRef] [PubMed]
    [Google Scholar]
  32. López de Quinto S. , Martínez-Salas E. . ( 1997; ). Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation. . J Virol 71:, 4171–4175.[PubMed]
    [Google Scholar]
  33. Martínez-Salas E. , Domingo E. . ( 1995; ). Effect of expression of the aphthovirus protease 3C on viral infection and gene expression. . Virology 212:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  34. Medina M. , Domingo E. , Brangwyn J. K. , Belsham G. J. . ( 1993; ). The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. . Virology 194:, 355–359. [CrossRef] [PubMed]
    [Google Scholar]
  35. Monaghan P. , Gold S. , Simpson J. , Zhang Z. , Weinreb P. H. , Violette S. M. , Alexandersen S. , Jackson T. . ( 2005; ). The α v β 6 integrin receptor for Foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle. . J Gen Virol 86:, 2769–2780. [CrossRef] [PubMed]
    [Google Scholar]
  36. Moraes M. P. , Mayr G. A. , Mason P. W. , Grubman M. J. . ( 2002; ). Early protection against homologous challenge after a single dose of replication-defective human adenovirus type 5 expressing capsid proteins of foot-and-mouth disease virus (FMDV) strain A24. . Vaccine 20:, 1631–1639. [CrossRef] [PubMed]
    [Google Scholar]
  37. Moraes M. P. , Segundo F. D. , Dias C. C. , Pena L. , Grubman M. J. . ( 2011; ). Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response. . Vaccine 29:, 9431–9440. [CrossRef] [PubMed]
    [Google Scholar]
  38. Moscufo N. , Simons J. , Chow M. . ( 1991; ). Myristoylation is important at multiple stages in poliovirus assembly. . J Virol 65:, 2372–2380.[PubMed]
    [Google Scholar]
  39. OIE ( 2008; ). Foot-and-mouth disease. . In Manual of Standards for Diagnostic Test and Vaccines for Terrestrial Animals. World Organisation for Animal Health (OIE);. http://web.oie.int/eng/normes/MMANUAL/2008/pdf/2.01.05_FMD.pdf
    [Google Scholar]
  40. Pacheco J. M. , Brum M. C. , Moraes M. P. , Golde W. T. , Grubman M. J. . ( 2005; ). Rapid protection of cattle from direct challenge with foot-and-mouth disease virus (FMDV) by a single inoculation with an adenovirus-vectored FMDV subunit vaccine. . Virology 337:, 205–209. [CrossRef] [PubMed]
    [Google Scholar]
  41. Pettersen E. F. , Goddard T. D. , Huang C. C. , Couch G. S. , Greenblatt D. M. , Meng E. C. , Ferrin T. E. . ( 2004; ). UCSF Chimera – a visualization system for exploratory research and analysis. . J Comput Chem 25:, 1605–1612. [CrossRef] [PubMed]
    [Google Scholar]
  42. Pilipenko E. V. , Blinov V. M. , Chernov B. K. , Dmitrieva T. M. , Agol V. I. . ( 1989; ). Conservation of the secondary structure elements of the 5′-untranslated region of cardio- and aphthovirus RNAs. . Nucleic Acids Res 17:, 5701–5711. [CrossRef] [PubMed]
    [Google Scholar]
  43. Polacek C. , Gullberg M. , Li J. , Belsham G. J. . ( 2013; ). Low levels of foot-and-mouth disease virus 3Cpro expression are required to achieve optimal capsid protein expression and processing in mammalian cells. . J Gen Virol 94: 1249–1258.[CrossRef]
    [Google Scholar]
  44. Porta C. , Xu X. , Loureiro S. , Paramasivam S. , Ren J. , Al-Khalil T. , Burman A. , Jackson T. , Belsham G. J. . & other authors ( 2013a; ). Efficient production of foot-and-mouth disease virus empty capsids in insect cells following down regulation of 3C protease activity. . J Virol Methods 187:, 406–412. [CrossRef] [PubMed]
    [Google Scholar]
  45. Porta C. , Kotecha A. , Burman A. , Jackson T. , Ren J. , Loureiro S. , Jones I. M. , Fry E. E. , Stuart D. I. , Charleston B. . ( 2013b; ). Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen. . PLoS Pathog 9:, e1003255. [CrossRef] [PubMed]
    [Google Scholar]
  46. Roberts L. O. , Belsham G. J. . ( 1997; ). Complementation of defective picornavirus internal ribosome entry site (IRES) elements by the coexpression of fragments of the IRES. . Virology 227:, 53–62. [CrossRef] [PubMed]
    [Google Scholar]
  47. Robertson M. E. , Seamons R. A. , Belsham G. J. . ( 1999; ). A selection system for functional internal ribosome entry site (IRES) elements: analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. . RNA 5:, 1167–1179. [CrossRef] [PubMed]
    [Google Scholar]
  48. Rodriguez L. L. , Grubman M. J. . ( 2009; ). Foot and mouth disease virus vaccines. . Vaccine 27: (Suppl 4), D90–D94. [CrossRef] [PubMed]
    [Google Scholar]
  49. Roeder P. L. , Le Blanc Smith P. M. . ( 1987; ). Detection and typing of foot-and-mouth disease virus by enzyme-linked immunosorbent assay: a sensitive, rapid and reliable technique for primary diagnosis. . Res Vet Sci 43:, 225–232.[PubMed]
    [Google Scholar]
  50. Rowlands D. J. , Sangar D. V. , Brown F. . ( 1975; ). A comparative chemical and serological study of the full and empty particles of foot-and mouth disease virus. . J Gen Virol 26:, 227–238. [CrossRef] [PubMed]
    [Google Scholar]
  51. Sa-Carvalho D. , Rieder E. , Baxt B. , Rodarte R. , Tanuri A. , Mason P. W. . ( 1997; ). Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. . J Virol 71:, 5115–5123.[PubMed]
    [Google Scholar]
  52. Sambrook J. , Fritsch E. F. , Maniatis T. . ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  53. Sweeney T. R. , Roqué-Rosell N. , Birtley J. R. , Leatherbarrow R. J. , Curry S. . ( 2007; ). Structural and mutagenic analysis of foot-and-mouth disease virus 3C protease reveals the role of the β-ribbon in proteolysis. . J Virol 81:, 115–124. [CrossRef] [PubMed]
    [Google Scholar]
  54. Wriggers W. . ( 2010; ). Using Situs for the integration of multi-resolution structures. . Biophys Rev 2:, 21–27. [CrossRef] [PubMed]
    [Google Scholar]
  55. Yan X. , Sinkovits R. S. , Baker T. S. . ( 2007; ). AUTO3DEM–an automated and high throughput program for image reconstruction of icosahedral particles. . J Struct Biol 157:, 73–82. [CrossRef] [PubMed]
    [Google Scholar]
  56. Yu Y. , Wang H. , Zhao L. , Zhang C. , Jiang Z. , Yu L. . ( 2011; ). Fine mapping of a foot-and-mouth disease virus epitope recognized by serotype-independent monoclonal antibody 4B2. . J Microbiol 49:, 94–101. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.054122-0
Loading
/content/journal/jgv/10.1099/vir.0.054122-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error