1887

Abstract

Human noroviruses (NoVs), a major cause of viral gastroenteritis, are difficult to study due to the lack of a cell-culture and a small-animal model. Pigs share with humans the types A and H histo-blood group antigens on the intestinal epithelium and have been suggested as a potential model for studies of NoV pathogenesis, immunity and vaccines. In this study, the effects of age and a cholesterol-lowering drug, simvastatin, on the susceptibility of pigs to NoV infection were evaluated. The median infectious dose (ID) of a genogroup II, genotype 4 (GII.4) 2006b variant was determined. The ID in neonatal (4–5 days of age) pigs was ≤2.74×10 viral RNA copies. In older pigs (33–34 days of age), the ID was 6.43×10 but decreased to <2.74×10 in simvastatin-fed older pigs. Evidence of NoV infection was obtained by increased virus load in the intestinal contents, cytopathological changes in the small intestine, including irregular microvilli, necrosis and apoptosis, and detection of viral antigen in the tip of villi in duodenum. This GII.4 variant was isolated in 2008 from a patient from whom a large volume of stool was collected. GII.4 NoVs are continuously subjected to selective pressure by human immunity, and antigenically different GII.4 NoV variants emerge every 1–2 years. The determination of the ID of this challenge virus is valuable for evaluation of protection against different GII.4 variants conferred by NoV vaccines in concurrence with other GII.4 variants in the gnotobiotic pig model.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.054080-0
2013-09-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/9/2005.html?itemId=/content/journal/jgv/10.1099/vir.0.054080-0&mimeType=html&fmt=ahah

References

  1. Armstrong W. D., Cline T. R.. ( 1977; ). Effects of various nutrient levels and enviromental temperatures on the incidence of colibacillary diarrhea in pigs: intestinal fistulation and titration studies. . J Anim Sci 45:, 1042–1050.[PubMed]
    [Google Scholar]
  2. Atmar R. L., Opekun A. R., Gilger M. A., Estes M. K., Crawford S. E., Neill F. H., Graham D. Y.. ( 2008; ). Norwalk virus shedding after experimental human infection. . Emerg Infect Dis 14:, 1553–1557. [CrossRef] [PubMed]
    [Google Scholar]
  3. Atmar R. L., Bernstein D. I., Harro C. D., Al-Ibrahim M. S., Chen W. H., Ferreira J., Estes M. K., Graham D. Y., Opekun A. R.. & other authors ( 2011; ). Norovirus vaccine against experimental human Norwalk virus illness. . N Engl J Med 365:, 2178–2187. [CrossRef] [PubMed]
    [Google Scholar]
  4. Beersma M. F., Schutten M., Vennema H., Hartwig N. G., Mes T. H., Osterhaus A. D., van Doornum G. J., Koopmans M.. ( 2009; ). Norovirus in a Dutch tertiary care hospital (2002–2007): frequent nosocomial transmission and dominance of GIIb strains in young children. . J Hosp Infect 71:, 199–205. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bok K., Parra G. I., Mitra T., Abente E., Shaver C. K., Boon D., Engle R., Yu C., Kapikian A. Z.. & other authors ( 2011; ). Chimpanzees as an animal model for human norovirus infection and vaccine development. . Proc Natl Acad Sci U S A 108:, 325–330. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brito L. A., Singh M.. ( 2011; ). Acceptable levels of endotoxin in vaccine formulations during preclinical research. . J Pharm Sci 100:, 34–37. [CrossRef] [PubMed]
    [Google Scholar]
  7. Busch J., Specht S., Ezzelarab M., Cooper D. K.. ( 2006; ). Buccal mucosal cell immunohistochemistry: a simple method of determining the ABH phenotype of baboons, monkeys, and pigs. . Xenotransplantation 13:, 63–68. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chang K. O.. ( 2009; ). Role of cholesterol pathways in norovirus replication. . J Virol 83:, 8587–8595. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cheetham S., Souza M., Meulia T., Grimes S., Han M. G., Saif L. J.. ( 2006; ). Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. . J Virol 80:, 10372–10381. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cheetham S., Souza M., McGregor R., Meulia T., Wang Q., Saif L. J.. ( 2007; ). Binding patterns of human norovirus-like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo-blood group antigen expression. . J Virol 81:, 3535–3544. [CrossRef] [PubMed]
    [Google Scholar]
  11. El-Kamary S. S., Pasetti M. F., Mendelman P. M., Frey S. E., Bernstein D. I., Treanor J. J., Ferreira J., Chen W. H., Sublett R.. & other authors ( 2010; ). Adjuvanted intranasal Norwalk virus-like particle vaccine elicits antibodies and antibody-secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues. . J Infect Dis 202:, 1649–1658. [CrossRef] [PubMed]
    [Google Scholar]
  12. Farkas T., Zhong W. M., Jing Y., Huang P. W., Espinosa S. M., Martinez N., Morrow A. L., Ruiz-Palacios G. M., Pickering L. K., Jiang X.. ( 2004; ). Genetic diversity among sapoviruses. . Arch Virol 149:, 1309–1323. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gallimore C. I., Cubitt D., du Plessis N., Gray J. J.. ( 2004; ). Asymptomatic and symptomatic excretion of noroviruses during a hospital outbreak of gastroenteritis. . J Clin Microbiol 42:, 2271–2274. [CrossRef] [PubMed]
    [Google Scholar]
  14. Günther H., Otto P., Heilmann P.. ( 1984; ). [Diarrhea in young calves. 6. Determination of the pathogenicity of a bovine coronavirus and an unidentified icosahedral virus]. . Arch Exp Veterinarmed 38:, 781–792 (in German).[PubMed]
    [Google Scholar]
  15. Guo L., Wang J., Zhou H., Si H., Wang M., Song J., Han B., Shu Y., Ren L.. & other authors ( 2008; ). Intranasal administration of a recombinant adenovirus expressing the norovirus capsid protein stimulates specific humoral, mucosal, and cellular immune responses in mice. . Vaccine 26:, 460–468. [CrossRef] [PubMed]
    [Google Scholar]
  16. Harris J. P., Edmunds W. J., Pebody R., Brown D. W., Lopman B. A.. ( 2008; ). Deaths from norovirus among the elderly, England and Wales. . Emerg Infect Dis 14:, 1546–1552. [CrossRef] [PubMed]
    [Google Scholar]
  17. Huang P., Farkas T., Marionneau S., Zhong W., Ruvoën-Clouet N., Morrow A. L., Altaye M., Pickering L. K., Newburg D. S.. & other authors ( 2003; ). Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. . J Infect Dis 188:, 19–31. [CrossRef] [PubMed]
    [Google Scholar]
  18. Huang P., Farkas T., Zhong W., Tan M., Thornton S., Morrow A. L., Jiang X.. ( 2005; ). Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. . J Virol 79:, 6714–6722. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hutson A. M., Atmar R. L., Graham D. Y., Estes M. K.. ( 2002; ). Norwalk virus infection and disease is associated with ABO histo-blood group type. . J Infect Dis 185:, 1335–1337. [CrossRef] [PubMed]
    [Google Scholar]
  20. Jiang X., Huang P. W., Zhong W. M., Farkas T., Cubitt D. W., Matson D. O.. ( 1999; ). Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR. . J Virol Methods 83:, 145–154. [CrossRef] [PubMed]
    [Google Scholar]
  21. Jung K., Wang Q., Kim Y., Scheuer K., Zhang Z., Shen Q., Chang K. O., Saif L. J.. ( 2012; ). The effects of simvastatin or interferon-α on infectivity of human norovirus using a gnotobiotic pig model for the study of antivirals. . PLoS ONE 7:, e41619. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kageyama T., Kojima S., Shinohara M., Uchida K., Fukushi S., Hoshino F. B., Takeda N., Katayama K.. ( 2003; ). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. . J Clin Microbiol 41:, 1548–1557. [CrossRef] [PubMed]
    [Google Scholar]
  23. Karst S. M.. ( 2010; ). Pathogenesis of noroviruses, emerging RNA viruses. . Viruses 2:, 748–781. [CrossRef] [PubMed]
    [Google Scholar]
  24. Karst S. M., Wobus C. E., Lay M., Davidson J., Virgin H. W. IV. ( 2003; ). STAT1-dependent innate immunity to a Norwalk-like virus. . Science 299:, 1575–1578. [CrossRef] [PubMed]
    [Google Scholar]
  25. Koo H. L., Ajami N., Atmar R. L., DuPont H. L.. ( 2010; ). Noroviruses: the leading cause of gastroenteritis worldwide. . Discov Med 10:, 61–70.[PubMed]
    [Google Scholar]
  26. Lay M. K., Atmar R. L., Guix S., Bharadwaj U., He H., Neill F. H., Sastry K. J., Yao Q., Estes M. K.. ( 2010; ). Norwalk virus does not replicate in human macrophages or dendritic cells derived from the peripheral blood of susceptible humans. . Virology 406:, 1–11. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lindesmith L., Moe C., Lependu J., Frelinger J. A., Treanor J., Baric R. S.. ( 2005; ). Cellular and humoral immunity following Snow Mountain virus challenge. . J Virol 79:, 2900–2909. [CrossRef] [PubMed]
    [Google Scholar]
  28. LoBue A. D., Lindesmith L., Yount B., Harrington P. R., Thompson J. M., Johnston R. E., Moe C. L., Baric R. S.. ( 2006; ). Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains. . Vaccine 24:, 5220–5234. [CrossRef] [PubMed]
    [Google Scholar]
  29. LoBue A. D., Thompson J. M., Lindesmith L., Johnston R. E., Baric R. S.. ( 2009; ). Alphavirus-adjuvanted norovirus-like particle vaccines: heterologous, humoral, and mucosal immune responses protect against murine norovirus challenge. . J Virol 83:, 3212–3227. [CrossRef] [PubMed]
    [Google Scholar]
  30. Mach F.. ( 2002; ). Immunosuppressive effects of statins. . Atheroscler Suppl 3:, 17–20. [CrossRef] [PubMed]
    [Google Scholar]
  31. Marionneau S., Ruvoën N., Le Moullac-Vaidye B., Clement M., Cailleau-Thomas A., Ruiz-Palacois G., Huang P., Jiang X., Le Pendu J.. ( 2002; ). Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. . Gastroenterology 122:, 1967–1977. [CrossRef] [PubMed]
    [Google Scholar]
  32. Meyer R. C., Bohl E. H., Kohler E. M.. ( 1964; ). Procurement and maintenance of germ-free swine for microbiological investigations. . Appl Microbiol 12:, 295–300.[PubMed]
    [Google Scholar]
  33. Otto P. H., Clarke I. N., Lambden P. R., Salim O., Reetz J., Liebler-Tenorio E. M.. ( 2011; ). Infection of calves with bovine norovirus GIII.1 strain Jena virus: an experimental model to study the pathogenesis of norovirus infection. . J Virol 85:, 12013–12021. [CrossRef] [PubMed]
    [Google Scholar]
  34. Reed L., Muench H.. ( 1938; ). A simple method of estimating fifty percent endpoints. . Am J Hyg 27:, 493–497.
    [Google Scholar]
  35. Rockx B. H., Bogers W. M., Heeney J. L., van Amerongen G., Koopmans M. P.. ( 2005a; ). Experimental norovirus infections in non-human primates. . J Med Virol 75:, 313–320. [CrossRef] [PubMed]
    [Google Scholar]
  36. Rockx B. H., Vennema H., Hoebe C. J., Duizer E., Koopmans M. P.. ( 2005b; ). Association of histo-blood group antigens and susceptibility to norovirus infections. . J Infect Dis 191:, 749–754. [CrossRef] [PubMed]
    [Google Scholar]
  37. Souza M., Cheetham S. M., Azevedo M. S., Costantini V., Saif L. J.. ( 2007a; ). Cytokine and antibody responses in gnotobiotic pigs after infection with human norovirus genogroup II.4 (HS66 strain). . J Virol 81:, 9183–9192. [CrossRef] [PubMed]
    [Google Scholar]
  38. Souza M., Costantini V., Azevedo M. S., Saif L. J.. ( 2007b; ). A human norovirus-like particle vaccine adjuvanted with ISCOM or mLT induces cytokine and antibody responses and protection to the homologous GII.4 human norovirus in a gnotobiotic pig disease model. . Vaccine 25:, 8448–8459. [CrossRef] [PubMed]
    [Google Scholar]
  39. Souza M., Azevedo M. S., Jung K., Cheetham S., Saif L. J.. ( 2008; ). Pathogenesis and immune responses in gnotobiotic calves after infection with the genogroup II.4-HS66 strain of human norovirus. . J Virol 82:, 1777–1786. [CrossRef] [PubMed]
    [Google Scholar]
  40. Subekti D. S., Tjaniadi P., Lesmana M., McArdle J., Iskandriati D., Budiarsa I. N., Walujo P., Suparto I. H., Winoto I.. & other authors ( 2002; ). Experimental infection of Macaca nemestrina with a Toronto Norwalk-like virus of epidemic viral gastroenteritis. . J Med Virol 66:, 400–406. [CrossRef] [PubMed]
    [Google Scholar]
  41. Sugieda M., Nagaoka H., Kakishima Y., Ohshita T., Nakamura S., Nakajima S.. ( 1998; ). Detection of Norwalk-like virus genes in the caecum contents of pigs. . Arch Virol 143:, 1215–1221. [CrossRef] [PubMed]
    [Google Scholar]
  42. Takanashi S., Wang Q., Chen N., Shen Q., Jung K., Zhang Z., Yokoyama M., Lindesmith L. C., Baric R. S., Saif L. J.. ( 2011; ). Characterization of emerging GII.g/GII.12 noroviruses from a gastroenteritis outbreak in the United States in 2010. . J Clin Microbiol 49:, 3234–3244. [CrossRef] [PubMed]
    [Google Scholar]
  43. Tan M., Jiang X.. ( 2005; ). Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. . Trends Microbiol 13:, 285–293. [CrossRef] [PubMed]
    [Google Scholar]
  44. Tan M., Jiang X.. ( 2011; ). Norovirus–host interaction: multi-selections by human histo-blood group antigens. . Trends Microbiol 19:, 382–388. [CrossRef] [PubMed]
    [Google Scholar]
  45. Tan M., Fang P., Chachiyo T., Xia M., Huang P., Fang Z., Jiang W., Jiang X.. ( 2008; ). Noroviral P particle: structure, function and applications in virus–host interaction. . Virology 382:, 115–123. [CrossRef] [PubMed]
    [Google Scholar]
  46. Tian P., Jiang X., Zhong W., Jensen H. M., Brandl M., Bates A. H., Engelbrektson A. L., Mandrell R.. ( 2007; ). Binding of recombinant norovirus like particle to histo-blood group antigen on cells in the lumen of pig duodenum. . Res Vet Sci 83:, 410–418. [CrossRef] [PubMed]
    [Google Scholar]
  47. Turcios-Ruiz R. M., Axelrod P., St John K., Bullitt E., Donahue J., Robinson N., Friss H. E.. ( 2008; ). Outbreak of necrotizing enterocolitis caused by norovirus in a neonatal intensive care unit. . J Pediatr 153:, 339–344. [CrossRef] [PubMed]
    [Google Scholar]
  48. Velasquez L. S., Shira S., Berta A. N., Kilbourne J., Medi B. M., Tizard I., Ni Y., Arntzen C. J., Herbst-Kralovetz M. M.. ( 2011; ). Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine. . Vaccine 29:, 5221–5231. [CrossRef] [PubMed]
    [Google Scholar]
  49. Ward J. M., Wobus C. E., Thackray L. B., Erexson C. R., Faucette L. J., Belliot G., Barron E. L., Sosnovtsev S. V., Green K. Y.. ( 2006; ). Pathology of immunodeficient mice with naturally occurring murine norovirus infection. . Toxicol Pathol 34:, 708–715. [CrossRef] [PubMed]
    [Google Scholar]
  50. Wobus C. E., Thackray L. B., Virgin H. W. IV. ( 2006; ). Murine norovirus: a model system to study norovirus biology and pathogenesis. . J Virol 80:, 5104–5112. [CrossRef] [PubMed]
    [Google Scholar]
  51. Woode G. N., Bridger J. C.. ( 1978; ). Isolation of small viruses resembling astroviruses and caliciviruses from acute enteritis of calves. . J Med Microbiol 11:, 441–452. [CrossRef] [PubMed]
    [Google Scholar]
  52. Xia M., Farkas T., Jiang X.. ( 2007; ). Norovirus capsid protein expressed in yeast forms virus-like particles and stimulates systemic and mucosal immunity in mice following an oral administration of raw yeast extracts. . J Med Virol 79:, 74–83. [CrossRef] [PubMed]
    [Google Scholar]
  53. Yang Y., Xia M., Tan M., Huang P., Zhong W., Pang X. L., Lee B. E., Meller J., Wang T., Jiang X.. ( 2010; ). Genetic and phenotypic characterization of GII-4 noroviruses that circulated during 1987 to 2008. . J Virol 84:, 9595–9607. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.054080-0
Loading
/content/journal/jgv/10.1099/vir.0.054080-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error