1887

Abstract

The fitness of non-nucleoside reverse transcriptase inhibitor (NNRTI) drug-resistant reverse transcriptase (RT) mutants of HIV-1 correlates with the amount of RT in the virions and the RNase H activity of the RT. We wanted to understand the mechanism by which secondary NNRTI-resistance mutations, L100I and K101E, and the nucleoside resistance mutation, L74V, alter the fitness of K103N and G190S viruses. We measured the amount of RT in virions and the polymerization and RNase H activities of mutant RTs compared to wild-type, K103N and G190S. We found that L100I, K101E and L74V did not change the polymerization or RNase H activities of K103N or G190S RTs. However, L100I and K101E reduced the amount of RT in the virions and subsequent addition of L74V restored RT levels back to those of G190S or K103N alone. We conclude that fitness changes caused by L100I, K101E and L74V derive from their effects on RT content.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.050914-0
2013-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/7/1597.html?itemId=/content/journal/jgv/10.1099/vir.0.050914-0&mimeType=html&fmt=ahah

References

  1. Amacker M., Hübscher U.. ( 1998; ). Chimeric HIV-1 and feline immunodeficiency virus reverse transcriptases: critical role of the p51 subunit in the structural integrity of heterodimeric lentiviral DNA polymerases. . J Mol Biol 278:, 757–765. [CrossRef] [PubMed]
    [Google Scholar]
  2. Archer R. H., Dykes C., Gerondelis P., Lloyd A., Fay P., Reichman R. C., Bambara R. A., Demeter L. M.. ( 2000; ). Mutants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase resistant to nonnucleoside reverse transcriptase inhibitors demonstrate altered rates of RNase H cleavage that correlate with HIV-1 replication fitness in cell culture. . J Virol 74:, 8390–8401. [CrossRef] [PubMed]
    [Google Scholar]
  3. Aulicino P. C., Rocco C. A., Mecikovsky D., Bologna R., Mangano A., Sen L.. ( 2010; ). HIV type-1 genotypic resistance profiles in vertically infected patients from Argentina reveal an association between K103N+L100I and L74V mutations. . Antivir Ther 15:, 641–650. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bacheler L. T., Anton E. D., Kudish P., Baker D., Bunville J., Krakowski K., Bolling L., Aujay M., Wang X. V.. & other authors ( 2000; ). Human immunodeficiency virus type 1 mutations selected in patients failing efavirenz combination therapy. . Antimicrob Agents Chemother 44:, 2475–2484. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bacheler L., Jeffrey S., Hanna G., D’Aquila R., Wallace L., Logue K., Cordova B., Hertogs K., Larder B.. & other authors ( 2001; ). Genotypic correlates of phenotypic resistance to efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy. . J Virol 75:, 4999–5008. [CrossRef] [PubMed]
    [Google Scholar]
  6. Boyer P. L., Gao H. Q., Hughes S. H.. ( 1998; ). A mutation at position 190 of human immunodeficiency virus type 1 reverse transcriptase interacts with mutations at positions 74 and 75 via the template primer. . Antimicrob Agents Chemother 42:, 447–452.[PubMed]
    [Google Scholar]
  7. Bukrinsky M. I., Sharova N., McDonald T. L., Pushkarskaya T., Tarpley W. G., Stevenson M.. ( 1993; ). Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. . Proc Natl Acad Sci U S A 90:, 6125–6129. [CrossRef] [PubMed]
    [Google Scholar]
  8. Caliendo A. M., Savara A., An D., DeVore K., Kaplan J. C., D’Aquila R. T.. ( 1996; ). Effects of zidovudine-selected human immunodeficiency virus type 1 reverse transcriptase amino acid substitutions on processive DNA synthesis and viral replication. . J Virol 70:, 2146–2153.[PubMed]
    [Google Scholar]
  9. Chesebro B., Wehrly K., Nishio J., Perryman S.. ( 1992; ). Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. . J Virol 66:, 6547–6554.[PubMed]
    [Google Scholar]
  10. Deval J., Navarro J. M., Selmi B., Courcambeck J., Boretto J., Halfon P., Garrido-Urbani S., Sire J., Canard B.. ( 2004; ). A loss of viral replicative capacity correlates with altered DNA polymerization kinetics by the human immunodeficiency virus reverse transcriptase bearing the K65R and L74V dideoxynucleoside resistance substitutions. . J Biol Chem 279:, 25489–25496. [CrossRef] [PubMed]
    [Google Scholar]
  11. Ding J., Das K., Hsiou Y., Sarafianos S. G., Clark A. D. Jr, Jacobo-Molina A., Tantillo C., Hughes S. H., Arnold E.. ( 1998; ). Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. . J Mol Biol 284:, 1095–1111. [CrossRef] [PubMed]
    [Google Scholar]
  12. Domaoal R. A., Bambara R. A., Demeter L. M.. ( 2006; ). HIV-1 reverse transcriptase mutants resistant to nonnucleoside reverse transcriptase inhibitors do not adversely affect DNA synthesis: pre-steady-state and steady-state kinetic studies. . J Acquir Immune Defic Syndr 42:, 405–411. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gerondelis P., Archer R. H., Palaniappan C., Reichman R. C., Fay P. J., Bambara R. A., Demeter L. M.. ( 1999; ). The P236L delavirdine-resistant human immunodeficiency virus type 1 mutant is replication defective and demonstrates alterations in both RNA 5′-end- and DNA 3′-end-directed RNase H activities. . J Virol 73:, 5803–5813.[PubMed]
    [Google Scholar]
  14. Goff S. P.. ( 1990; ). Retroviral reverse transcriptase: synthesis, structure, and function. . J Acquir Immune Defic Syndr 3:, 817–831.[PubMed]
    [Google Scholar]
  15. Hou E. W., Prasad R., Beard W. A., Wilson S. H.. ( 2004; ). High-level expression and purification of untagged and histidine-tagged HIV-1 reverse transcriptase. . Protein Expr Purif 34:, 75–86. [CrossRef] [PubMed]
    [Google Scholar]
  16. Huang W., Gamarnik A., Limoli K., Petropoulos C. J., Whitcomb J. M.. ( 2003; ). Amino acid substitutions at position 190 of human immunodeficiency virus type 1 reverse transcriptase increase susceptibility to delavirdine and impair virus replication. . J Virol 77:, 1512–1523. [CrossRef] [PubMed]
    [Google Scholar]
  17. Julias J. G., Ferris A. L., Boyer P. L., Hughes S. H.. ( 2001; ). Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase. . J Virol 75:, 6537–6546. [CrossRef] [PubMed]
    [Google Scholar]
  18. Koval C. E., Dykes C., Wang J., Demeter L. M.. ( 2006; ). Relative replication fitness of efavirenz-resistant mutants of HIV-1: correlation with frequency during clinical therapy and evidence of compensation for the reduced fitness of K103N + L100I by the nucleoside resistance mutation L74V. . Virology 353:, 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  19. Levy J. A.. ( 2007; ). HIV and the pathogenesis of AIDS . . Washington, D.C.: ASM Press.
    [Google Scholar]
  20. McColl D. J., Chappey C., Parkin N. T., Miller M. D.. ( 2008; ). Prevalence, genotypic associations and phenotypic characterization of K65R, L74V and other HIV-1 RT resistance mutations in a commercial database. . Antivir Ther 13:, 189–197.[PubMed]
    [Google Scholar]
  21. Rhee S. Y., Gonzales M. J., Kantor R., Betts B. J., Ravela J., Shafer R. W.. ( 2003; ). Human immunodeficiency virus reverse transcriptase and protease sequence database. . Nucleic Acids Res 31:, 298–303. [CrossRef] [PubMed]
    [Google Scholar]
  22. Shafer R. W.. ( 2006; ). Rationale and uses of a public HIV drug-resistance database. . J Infect Dis 194: (Suppl 1), S51–S58. [CrossRef] [PubMed]
    [Google Scholar]
  23. Sharma P. L., Crumpacker C. S.. ( 1999; ). Decreased processivity of human immunodeficiency virus type 1 reverse transcriptase (RT) containing didanosine-selected mutation Leu74Val: a comparative analysis of RT variants Leu74Val and lamivudine-selected Met184Val. . J Virol 73:, 8448–8456.[PubMed]
    [Google Scholar]
  24. Sharma P. L., Nettles J. H., Feldman A., Rapp K., Schinazi R. F.. ( 2009; ). Comparative analysis of in vitro processivity of HIV-1 reverse transcriptases containing mutations 65R, 74V, 184V and 65R+74V. . Antiviral Res 83:, 317–323. [CrossRef] [PubMed]
    [Google Scholar]
  25. Szilvay A. M., Nornes S., Haugan I. R., Olsen L., Prasad V. R., Endresen C., Goff S. P., Helland D. E.. ( 1992; ). Epitope mapping of HIV-1 reverse transcriptase with monoclonal antibodies that inhibit polymerase and RNase H activities. . J Acquir Immune Defic Syndr 5:, 647–657.[PubMed]
    [Google Scholar]
  26. Toohey K., Wehrly K., Nishio J., Perryman S., Chesebro B.. ( 1995; ). Human immunodeficiency virus envelope V1 and V2 regions influence replication efficiency in macrophages by affecting virus spread. . Virology 213:, 70–79. [CrossRef] [PubMed]
    [Google Scholar]
  27. Wang J., Dykes C., Domaoal R. A., Koval C. E., Bambara R. A., Demeter L. M.. ( 2006; ). The HIV-1 reverse transcriptase mutants G190S and G190A, which confer resistance to non-nucleoside reverse transcriptase inhibitors, demonstrate reductions in RNase H activity and DNA synthesis from tRNA(Lys, 3) that correlate with reductions in replication efficiency. . Virology 348:, 462–474. [CrossRef] [PubMed]
    [Google Scholar]
  28. Wang J., Bambara R. A., Demeter L. M., Dykes C.. ( 2010a; ). Reduced fitness in cell culture of HIV-1 with nonnucleoside reverse transcriptase inhibitor-resistant mutations correlates with relative levels of reverse transcriptase content and RNase H activity in virions. . J Virol 84:, 9377–9389. [CrossRef] [PubMed]
    [Google Scholar]
  29. Wang J., Liang H., Bacheler L., Wu H., Deriziotis K., Demeter L. M., Dykes C.. ( 2010b; ). The non-nucleoside reverse transcriptase inhibitor efavirenz stimulates replication of human immunodeficiency virus type 1 harboring certain non-nucleoside resistance mutations. . Virology 402:, 228–237. [CrossRef] [PubMed]
    [Google Scholar]
  30. Whitcomb J. M., Hughes S. H.. ( 1992; ). Retroviral reverse transcription and integration: progress and problems. . Annu Rev Cell Biol 8:, 275–306. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.050914-0
Loading
/content/journal/jgv/10.1099/vir.0.050914-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error