1887

Abstract

(MiLBVV) is a member of the genus , which is a segmented negative-stranded RNA virus. In microprojectile bombardment experiments to identify a movement protein (MP) gene of ophioviruses that can -complement intercellular movement of an MP-deficient heterologous virus, a plasmid containing an infectious clone of a tomato mosaic virus (ToMV) derivative expressing the GFP was co-bombarded with plasmids containing one of three genes from MiLBVV RNAs 1, 2 and 4 onto . Intercellular movement of the movement-defective ToMV was restored by co-expression of the 55 kDa protein gene, but not with the two other genes. Transient expression in epidermal cells of and onion showed that the 55 kDa protein with GFP was localized on the plasmodesmata. The 55 kDa protein encoded in the MiLBVV RNA2 can function as an MP of the virus. This report is the first to describe an ophiovirus MP.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.050005-0
2013-05-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/5/1145.html?itemId=/content/journal/jgv/10.1099/vir.0.050005-0&mimeType=html&fmt=ahah

References

  1. Atabekov J. G., Dorokhov YuL., ( 1984;). Plant virus-specific transport function and resistance of plants to viruses. . Adv Virus Res 29:, 313–364. [CrossRef][PubMed]
    [Google Scholar]
  2. Barcala Tabarrozzi A. E., Peña E. J., Dal Bo E., Robles Luna G., Reyes C. A., Garcia M. L.. ( 2010;). Identification of Mirafiori lettuce big-vein virus and Lettuce big-vein associated virus infecting Lactuca sativa with symptoms of lettuce big-vein disease in Argentina. . Plant Pathol 59:, 1160–1161. [CrossRef]
    [Google Scholar]
  3. Bucher E., Lohuis D., van Poppel P. M. J. A., Geerts-Dimitriadou C., Goldbach R., Prins M.. ( 2006;). Multiple virus resistance at a high frequency using a single transgene construct. . J Gen Virol 87:, 3697–3701. [CrossRef][PubMed]
    [Google Scholar]
  4. Hiraguri A., Netsu O., Shimizu T., Uehara-Ichiki T., Omura T., Sasaki N., Nyunoya H., Sasaya T.. ( 2011;). The nonstructural protein pC6 of rice grassy stunt virus trans-complements the cell-to-cell spread of a movement-defective tomato mosaic virus. . Arch Virol 156:, 911–916. [CrossRef][PubMed]
    [Google Scholar]
  5. Hiraguri A., Hibino H., Hayashi T., Netsu O., Shimizu T., Uehara-Ichiki T., Omura T., Sasaki N., Nyunoya H., Sasaya T.. ( 2012;). The movement protein encoded by gene 3 of rice transitory yellowing virus is associated with virus particles. . J Gen Virol 93:, 2290–2298. [CrossRef][PubMed]
    [Google Scholar]
  6. Huijberts N., Blystad D. R., Bos L.. ( 1990;). Lettuce big-vein virus: mechanical transmission and relationships to tobacco stunt virus. . Ann Appl Biol 116:, 463–475. [CrossRef]
    [Google Scholar]
  7. Jagger I. C., Chandler N.. ( 1934;). Big vein, a disease of lettuce. . Phytopathology 24:, 1253–1256.
    [Google Scholar]
  8. Kasteel D. T., van der Wel N. N., Jansen K. A., Goldbach R. W., van Lent J. W.. ( 1997;). Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and brome mosaic virus. . J Gen Virol 78:, 2089–2093.[PubMed]
    [Google Scholar]
  9. Kawazu Y., Sasaya T., Morikawa T., Sugiyama K., Natsuaki T.. ( 2003;). Nucleotide sequence of the coat protein gene of Mirafiori lettuce virus. . J Gen Plant Pathol 69:, 55–60. [CrossRef]
    [Google Scholar]
  10. Kawazu Y., Fujiyama R., Noguchi Y.. ( 2009;). Transgenic resistance to Mirafiori lettuce virus in lettuce carrying inverted repeats of the viral coat protein gene. . Transgenic Res 18:, 113–120. [CrossRef]
    [Google Scholar]
  11. Kuwata S., Kubo S., Yamashita S., Doi Y.. ( 1983;). Rod-shaped particles, a probable entity of lettuce big vein virus. . Ann Phytopatho Soc Japan 49:, 246–251. [CrossRef]
    [Google Scholar]
  12. Lot H., Campbell R. N., Souche S., Milne R. G., Roggero P.. ( 2002;). Transmission by Olpidium brassicae of Mirafiori lettuce virus and Lettuce big-vein virus, and their roles in lettuce big-vein etiology. . Phytopathology 92:, 288–293. [CrossRef][PubMed]
    [Google Scholar]
  13. Lucas W. J.. ( 2006;). Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. . Virology 344:, 169–184. [CrossRef][PubMed]
    [Google Scholar]
  14. Morozov S. Y., Solovyev A. G.. ( 2003;). Triple gene block: modular design of a multifunctional machine for plant virus movement. . J Gen Virol 84:, 1351–1366. [CrossRef][PubMed]
    [Google Scholar]
  15. Naum-Onganía G., Gago-Zachert S., Peña E., Grau O., Garcia M. L.. ( 2003;). Citrus psorosis virus RNA 1 is of negative polarity and potentially encodes in its complementary strand a 24K protein of unknown function and 280K putative RNA dependent RNA polymerase. . Virus Res 96:, 49–61. [CrossRef][PubMed]
    [Google Scholar]
  16. Oparka K. J., Prior D. A., Santa Cruz S., Padgett H. S., Beachy R. N.. ( 1997;). Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). . Plant J 12:, 781–789. [CrossRef][PubMed]
    [Google Scholar]
  17. Palukaitis P., García-Arenal F.. ( 2003;). Cucumoviruses. . Adv Virus Res 62:, 241–323. [CrossRef][PubMed]
    [Google Scholar]
  18. Perbal M. C., Thomas C. L., Maule A. J.. ( 1993;). Cauliflower mosaic virus gene I product (P1) forms tubular structures which extend from the surface of infected protoplasts. . Virology 195:, 281–285. [CrossRef][PubMed]
    [Google Scholar]
  19. Reyes C. A., De Francesco A., Peña E. J., Costa N., Plata M. I., Sendin L., Castagnaro A. P., García M. L.. ( 2011;). Resistance to Citrus psorosis virus in transgenic sweet orange plants is triggered by coat protein-RNA silencing. . J Biotechnol 151:, 151–158. [CrossRef][PubMed]
    [Google Scholar]
  20. Roggero P., Ciuffo M., Vaira A. M., Accotto G. P., Masenga V., Milne R. G.. ( 2000;). An Ophiovirus isolated from lettuce with big-vein symptoms. . Arch Virol 145:, 2629–2642. [CrossRef][PubMed]
    [Google Scholar]
  21. Sasaya T., Koganezawa H.. ( 2006;). Molecular analysis and virus transmission tests place Olpidium virulentus, a vector of Mirafiori lettuce big-vein virus and tobacco stunt virus, as a distinct species rather than a strain of Olpidium brassicae. . J Gen Plant Pathol 72:, 20–25. [CrossRef]
    [Google Scholar]
  22. Sasaya T., Fujii H., Ishikawa K., Koganezawa H.. ( 2008;). Further evidence of Mirafiori lettuce big-vein virus but not of Lettuce big-vein associated virus with big-vein disease in lettuce. . Phytopathology 98:, 464–468. [CrossRef][PubMed]
    [Google Scholar]
  23. Scholthof H. B.. ( 2005;). Plant virus transport: motions of functional equivalence. . Trends Plant Sci 10:, 376–382. [CrossRef][PubMed]
    [Google Scholar]
  24. Shimizu T., Yoshii M., Wei T., Hirochika H., Omura T.. ( 2009;). Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. . Plant Biotechnol J 7:, 24–32. [CrossRef][PubMed]
    [Google Scholar]
  25. Shimizu T., Nakazono-Nagaoka E., Akita F., Uehara-Ichiki T., Omura T., Sasaya T.. ( 2011a;). Immunity to Rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein. . Virus Res 160:, 400–403. [CrossRef][PubMed]
    [Google Scholar]
  26. Shimizu T., Nakazono-Nagaoka E., Uehara-Ichiki T., Sasaya T., Omura T.. ( 2011b;). Targeting specific genes for RNA interference is crucial to the development of strong resistance to rice stripe virus. . Plant Biotechnol J 9:, 503–512. [CrossRef][PubMed]
    [Google Scholar]
  27. Shimizu T., Ogamino T., Hiraguri A., Nakazono-Nagaoka E., Uehara-Ichiki T., Nakajima M., Akutsu K., Omura T., Sasaya T.. ( 2012;). Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing dsRNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference. . Phytopathology 121128121625007. http://dx.doi.org/10.1094/PHYTO-07-12-0165-R [CrossRef][PubMed]
    [Google Scholar]
  28. Simpson C., Thomas C., Findlay K., Bayer E., Maule A. J.. ( 2009;). An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. . Plant Cell 21:, 581–594. [CrossRef][PubMed]
    [Google Scholar]
  29. Storms M. M., Kormelink R., Peters D., Van Lent J. W., Goldbach R. W.. ( 1995;). The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. . Virology 214:, 485–493. [CrossRef][PubMed]
    [Google Scholar]
  30. Taliansky M., Torrance L., Kalinina N. O.. ( 2008;). Role of plant virus movement proteins. . Methods Mol Biol 451:, 33–54. [CrossRef][PubMed]
    [Google Scholar]
  31. Vaira A. M., Gago-Zachert S., Garcia M. L., Guerri J., Hammond J., Milne R. G., Moreno P., Morikawa T., Natsuaki T.. & other authors ( 2011;). Family Ophioviridae. . In Virus Taxonomy: Classification and Nomenclature. Ninth Report of the International Commitee on Taxonomy of Viruses, pp. 743–748. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J... San Diego, CA:: Academic Press;.
    [Google Scholar]
  32. van der Wilk F., Dullemans A. M., Verbeek M., van den Heuvel J. F. J. M.. ( 2002;). Nucleotide sequence and genomic organization of an ophiovirus associated with lettuce big-vein disease. . J Gen Virol 83:, 2869–2877.[PubMed]
    [Google Scholar]
  33. van Lent J., Storms M., van der Meer F., Wellink J., Goldbach R.. ( 1991;). Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. . J Gen Virol 72:, 2615–2623. [CrossRef][PubMed]
    [Google Scholar]
  34. Vetten H. J., Lesemann D. E., Dalchow J.. ( 1987;). Electron-microscopic and serological detection of virus-like particles associated with Lettuce big-vein disease. . J Phytopathol 120:, 53–59. [CrossRef]
    [Google Scholar]
  35. Walsh J. A., Verbeek M.. ( 2011;). Genus Varicosavirus. . In Virus Taxonomy: Classification and Nomenclature. Ninth Report of the International Commitee on Taxonomy of Viruses, pp. 743–748. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J... San Diego, CA:: Academic Press;.
    [Google Scholar]
  36. Wellink J., van Lent J. W., Verver J., Sijen T., Goldbach R. W., van Kammen A.. ( 1993;). The cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts. . J Virol 67:, 3660–3664.[PubMed]
    [Google Scholar]
  37. Wieczorek A., Sanfaçon H.. ( 1993;). Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. . Virology 194:, 734–742. [CrossRef][PubMed]
    [Google Scholar]
  38. Wu Z. J., Wu J. G., Adkins S., Xie L. H., Li W. M.. ( 2010;). Rice ragged stunt virus segment S6-encoded nonstructural protein Pns6 complements cell-to-cell movement of Tobacco mosaic virus-based chimeric virus. . Virus Res 152:, 176–179. [CrossRef][PubMed]
    [Google Scholar]
  39. Xiong R., Wu J., Zhou Y., Zhou X.. ( 2008;). Identification of a movement protein of the tenuivirus rice stripe virus. . J Virol 82:, 12304–12311. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.050005-0
Loading
/content/journal/jgv/10.1099/vir.0.050005-0
Loading

Data & Media loading...

Supplements

Supplementary table 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error