1887

Abstract

Previous mutational analyses of naturally occurring West Nile virus (WNV) strains and engineered mutant WNV strains have identified locations in the viral genome that can have profound phenotypic effect on viral infectivity, temperature sensitivity and neuroinvasiveness. We chose six mutant WNV strains to evaluate for vector competence in the natural WNV vector , two of which contain multiple ablations of glycosylation sites in the envelope and NS1 proteins; three of which contain mutations in the NS4B protein and an attenuated natural bird isolate (Bird 1153) harbouring an NS4B mutation. Despite vertebrate attenuation, all NS4B mutant viruses displayed enhanced vector competence by . Non-glycosylated mutant viruses displayed decreased vector competence in mosquitoes, particularly when all three NS1 glycosylation sites were abolished. These results indicate the importance of both the NS4B protein and NS1 glycosylation in the transmission of WNV by a significant mosquito vector.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.049833-0
2013-05-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/5/1069.html?itemId=/content/journal/jgv/10.1099/vir.0.049833-0&mimeType=html&fmt=ahah

References

  1. Beasley D. W. , Whiteman M. C. , Zhang S. , Huang C. Y. , Schneider B. S. , Smith D. R. , Gromowski G. D. , Higgs S. , Kinney R. M. , Barrett A. D. . ( 2005; ). Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. . J Virol 79:, 8339–8347. [CrossRef] [PubMed]
    [Google Scholar]
  2. Brault A. C. , Langevin S. A. , Ramey W. N. , Fang Y. , Beasley D. W. , Barker C. M. , Sanders T. A. , Reisen W. K. , Barrett A. D. , Bowen R. A. . ( 2011; ). Reduced avian virulence and viremia of West Nile virus isolates from Mexico and Texas. . Am J Trop Med Hyg 85:, 758–767. [CrossRef] [PubMed]
    [Google Scholar]
  3. Davis C. T. , Beasley D. W. , Guzman H. , Siirin M. , Parsons R. E. , Tesh R. B. , Barrett A. D. . ( 2004; ). Emergence of attenuated West Nile virus variants in Texas, 2003. . Virology 330:, 342–350. [CrossRef] [PubMed]
    [Google Scholar]
  4. Davis C. T. , Ebel G. D. , Lanciotti R. S. , Brault A. C. , Guzman H. , Siirin M. , Lambert A. , Parsons R. E. , Beasley D. W. . & other authors ( 2005; ). Phylogenetic analysis of North American West Nile virus isolates, 2001-2004: evidence for the emergence of a dominant genotype. . Virology 342:, 252–265. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dupuis A. P. II , Marra P. P. , Kramer L. D. . ( 2003; ). Serologic evidence of West Nile virus transmission, Jamaica, West Indies. . Emerg Infect Dis 9:, 860–863. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ebel G. D. , Rochlin I. , Longacker J. , Kramer L. D. . ( 2005; ). Culex restuans (Diptera: Culicidae) relative abundance and vector competence for West Nile Virus. . J Med Entomol 42:, 838–843. [CrossRef] [PubMed]
    [Google Scholar]
  7. Lanciotti R. S. , Roehrig J. T. , Deubel V. , Smith J. , Parker M. , Steele K. , Crise B. , Volpe K. E. , Crabtree M. B. . & other authors ( 1999; ). Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. . Science 286:, 2333–2337. [CrossRef] [PubMed]
    [Google Scholar]
  8. Langevin S. A. , Bowen R. A. , Ramey W. N. , Sanders T. A. , Maharaj P. D. , Fang Y. , Cornelius J. , Barker C. M. , Reisen W. K. . & other authors ( 2011; ). Envelope and pre-membrane protein structural amino acid mutations mediate diminished avian growth and virulence of a Mexican West Nile virus isolate. . J Gen Virol 92:, 2810–2820. [CrossRef] [PubMed]
    [Google Scholar]
  9. May F. J. , Li L. , Davis C. T. , Galbraith S. E. , Barrett A. D. . ( 2010; ). Multiple pathways to the attenuation of West Nile virus in south-east Texas in 2003. . Virology 405:, 8–14. [CrossRef] [PubMed]
    [Google Scholar]
  10. Molaei G. , Andreadis T. G. , Armstrong P. M. , Anderson J. F. , Vossbrinck C. R. . ( 2006; ). Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. . Emerg Infect Dis 12:, 468–474. [CrossRef] [PubMed]
    [Google Scholar]
  11. Moudy R. M. , Meola M. A. , Morin L. L. , Ebel G. D. , Kramer L. D. . ( 2007; ). A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. . Am J Trop Med Hyg 77:, 365–370.[PubMed]
    [Google Scholar]
  12. Moudy R. M. , Zhang B. , Shi P. Y. , Kramer L. D. . ( 2009; ). West Nile virus envelope protein glycosylation is required for efficient viral transmission by Culex vectors. . Virology 387:, 222–228. [CrossRef] [PubMed]
    [Google Scholar]
  13. Murata R. , Eshita Y. , Maeda A. , Maeda J. , Akita S. , Tanaka T. , Yoshii K. , Kariwa H. , Umemura T. , Takashima I. . ( 2010; ). Glycosylation of the West Nile virus envelope protein increases in vivo and in vitro viral multiplication in birds. . Am J Trop Med Hyg 82:, 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  14. Puig-Basagoiti F. , Tilgner M. , Bennett C. J. , Zhou Y. , Muñoz-Jordán J. L. , García-Sastre A. , Bernard K. A. , Shi P. Y. . ( 2007; ). A mouse cell-adapted NS4B mutation attenuates West Nile virus RNA synthesis. . Virology 361:, 229–241. [CrossRef] [PubMed]
    [Google Scholar]
  15. Thiemann T. C. , Wheeler S. S. , Barker C. M. , Reisen W. K. . ( 2011; ). Mosquito host selection varies seasonally with host availability and mosquito density. . PLoS Negl Trop Dis 5:, e1452. [CrossRef] [PubMed]
    [Google Scholar]
  16. Totani M. , Yoshii K. , Kariwa H. , Takashima I. . ( 2011; ). Glycosylation of the envelope protein of West Nile virus affects its replication in chicks. . Avian Dis 55:, 561–568. [CrossRef] [PubMed]
    [Google Scholar]
  17. Turell M. J. , Dohm D. J. , Sardelis M. R. , Oguinn M. L. , Andreadis T. G. , Blow J. A. . ( 2005; ). An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. . J Med Entomol 42:, 57–62. [CrossRef] [PubMed]
    [Google Scholar]
  18. Welte T. , Xie G. , Wicker J. A. , Whiteman M. C. , Li L. , Rachamallu A. , Barrett A. , Wang T. . ( 2011; ). Immune responses to an attenuated West Nile virus NS4B-P38G mutant strain. . Vaccine 29:, 4853–4861. [CrossRef] [PubMed]
    [Google Scholar]
  19. Whiteman M. C. , Li L. , Wicker J. A. , Kinney R. M. , Huang C. , Beasley D. W. , Chung K. M. , Diamond M. S. , Solomon T. , Barrett A. D. . ( 2010; ). Development and characterization of non-glycosylated E and NS1 mutant viruses as a potential candidate vaccine for West Nile virus. . Vaccine 28:, 1075–1083. [CrossRef] [PubMed]
    [Google Scholar]
  20. Whiteman M. C. , Wicker J. A. , Kinney R. M. , Huang C. Y. , Solomon T. , Barrett A. D. . ( 2011; ). Multiple amino acid changes at the first glycosylation motif NS1 protein of WNV are necessary for complete attenuation for mouse neuroinvasiveness. . Vaccine 29:, 9702–9710.[CrossRef]
    [Google Scholar]
  21. Wicker J. A. , Whiteman M. C. , Beasley D. W. , Davis C. T. , Zhang S. , Schneider B. S. , Higgs S. , Kinney R. M. , Barrett A. D. . ( 2006; ). A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice. . Virology 349:, 245–253. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.049833-0
Loading
/content/journal/jgv/10.1099/vir.0.049833-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error